Martin Feldkircher, Luis Gruber, Florian Huber, Gregor Kastner
{"title":"Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian vector autoregressions?","authors":"Martin Feldkircher, Luis Gruber, Florian Huber, Gregor Kastner","doi":"10.1002/for.3121","DOIUrl":null,"url":null,"abstract":"<p>We assess the relationship between model size and complexity in the time-varying parameter vector autoregression (VAR) framework via thorough predictive exercises for the euro area, the United Kingdom, and the United States. It turns out that sophisticated dynamics through drifting coefficients are important in small data sets, while simpler models tend to perform better in sizeable data sets. To combine the best of both worlds, novel shrinkage priors help to mitigate the curse of dimensionality, resulting in competitive forecasts for all scenarios considered. Furthermore, we discuss dynamic model selection to improve upon the best performing individual model for each point in time.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"2126-2145"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3121","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We assess the relationship between model size and complexity in the time-varying parameter vector autoregression (VAR) framework via thorough predictive exercises for the euro area, the United Kingdom, and the United States. It turns out that sophisticated dynamics through drifting coefficients are important in small data sets, while simpler models tend to perform better in sizeable data sets. To combine the best of both worlds, novel shrinkage priors help to mitigate the curse of dimensionality, resulting in competitive forecasts for all scenarios considered. Furthermore, we discuss dynamic model selection to improve upon the best performing individual model for each point in time.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.