Sliding methods for dual fractional nonlinear divergence type parabolic equations and the Gibbons’ conjecture

IF 2.1 2区 数学 Q1 MATHEMATICS Advanced Nonlinear Studies Pub Date : 2024-03-11 DOI:10.1515/ans-2023-0114
Yahong Guo, Lingwei Ma, Zhenqiu Zhang
{"title":"Sliding methods for dual fractional nonlinear divergence type parabolic equations and the Gibbons’ conjecture","authors":"Yahong Guo, Lingwei Ma, Zhenqiu Zhang","doi":"10.1515/ans-2023-0114","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the general dual fractional parabolic problem <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>∂</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"script\">L</m:mi> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math>${\\partial }_{t}^{\\alpha }u\\left(x,t\\right)+\\mathcal{L}u\\left(x,t\\right)=f\\left(t,u\\left(x,t\\right)\\right) \\text{in} {\\mathbb{R}}^{n}{\\times}\\mathbb{R}.$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0114_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> We show that the bounded entire solution <jats:italic>u</jats:italic> satisfying certain one-direction asymptotic assumptions must be monotone increasing and one-dimensional symmetric along that direction under an appropriate decreasing condition on <jats:italic>f</jats:italic>. Our result here actually solves a well-known problem known as Gibbons’ conjecture in the setting of the dual fractional parabolic equations. To overcome the difficulties caused by the nonlocal divergence type operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi mathvariant=\"script\">L</m:mi> </m:math> <jats:tex-math>$\\mathcal{L}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0114_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> and the Marchaud time derivative <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>∂</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\partial }_{t}^{\\alpha }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0114_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>, we introduce several new ideas. First, we derive a general weighted average inequality corresponding to the nonlocal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi mathvariant=\"script\">L</m:mi> </m:math> <jats:tex-math>$\\mathcal{L}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0114_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula>, which plays a fundamental bridging role in proving maximum principles in unbounded domains. Then we combine these two essential ingredients to carry out the sliding method to establish the Gibbons’ conjecture. It is worth noting that our results are novel even for a special case of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi mathvariant=\"script\">L</m:mi> </m:math> <jats:tex-math>$\\mathcal{L}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0114_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula>, the fractional Laplacian (−Δ)<jats:sup> <jats:italic>s</jats:italic> </jats:sup>, and the approach developed in this paper will be adapted to a broad range of nonlocal parabolic equations involving more general Marchaud time derivatives and more general non-local elliptic operators.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"2 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0114","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the general dual fractional parabolic problem t α u ( x , t ) + L u ( x , t ) = f ( t , u ( x , t ) ) in R n × R . ${\partial }_{t}^{\alpha }u\left(x,t\right)+\mathcal{L}u\left(x,t\right)=f\left(t,u\left(x,t\right)\right) \text{in} {\mathbb{R}}^{n}{\times}\mathbb{R}.$ We show that the bounded entire solution u satisfying certain one-direction asymptotic assumptions must be monotone increasing and one-dimensional symmetric along that direction under an appropriate decreasing condition on f. Our result here actually solves a well-known problem known as Gibbons’ conjecture in the setting of the dual fractional parabolic equations. To overcome the difficulties caused by the nonlocal divergence type operator L $\mathcal{L}$ and the Marchaud time derivative t α ${\partial }_{t}^{\alpha }$ , we introduce several new ideas. First, we derive a general weighted average inequality corresponding to the nonlocal operator L $\mathcal{L}$ , which plays a fundamental bridging role in proving maximum principles in unbounded domains. Then we combine these two essential ingredients to carry out the sliding method to establish the Gibbons’ conjecture. It is worth noting that our results are novel even for a special case of L $\mathcal{L}$ , the fractional Laplacian (−Δ) s , and the approach developed in this paper will be adapted to a broad range of nonlocal parabolic equations involving more general Marchaud time derivatives and more general non-local elliptic operators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双分数非线性发散型抛物方程的滑动方法和吉本斯猜想
本文考虑 R n × R 中的一般二元分式抛物线问题 ∂ t α u ( x , t ) + L u ( x , t ) = f ( t , u ( x , t ) 。 ${partial }_{t}^{alpha }u\left(x,t\right)+\mathcal{L}u\left(x,t\right)=f\left(t,u\left(x,t\right)\right) \text{in}.{$ 我们证明,满足某些单向渐近假设的有界全解 u 必须是单调递增的,并且在 f 的适当递减条件下沿该方向是一维对称的。我们这里的结果实际上解决了一个著名的问题,即对偶分式抛物方程中的吉本斯猜想。为了克服非局部发散型算子 L $\mathcal{L}$ 和 Marchaud 时间导数 ∂ t α $\{partial }_{t}^\{alpha }$ 带来的困难,我们引入了几个新思路。首先,我们推导出与非局部算子 L $\mathcal{L}$ 相对应的一般加权平均不等式,它在证明无界域中的最大原则时起到了基本的桥梁作用。然后,我们将这两个基本要素结合起来,用滑动方法建立了吉本斯猜想。值得注意的是,即使对于 L $\mathcal{L}$的一个特例,即分数拉普拉斯(-Δ)s,我们的结果也是新颖的,本文所发展的方法将适用于涉及更一般的马尔查时间导数和更一般的非局部椭圆算子的广泛的非局部抛物方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
期刊最新文献
Solutions to the coupled Schrödinger systems with steep potential well and critical exponent Solitons to the Willmore flow Remarks on analytical solutions to compressible Navier–Stokes equations with free boundaries Homogenization of Smoluchowski-type equations with transmission boundary conditions Regularity of center-outward distribution functions in non-convex domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1