Characterization of a novel heterozygous frameshift variant in NDP gene that causes familial exudative vitreoretinopathy in female patients.

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Genetics and Genomics Pub Date : 2024-03-13 DOI:10.1007/s00438-024-02128-3
Mu Yang, Li Peng, Liting Lv, Erkuan Dai, Yunqi He, Rulian Zhao, Shujin Li
{"title":"Characterization of a novel heterozygous frameshift variant in NDP gene that causes familial exudative vitreoretinopathy in female patients.","authors":"Mu Yang, Li Peng, Liting Lv, Erkuan Dai, Yunqi He, Rulian Zhao, Shujin Li","doi":"10.1007/s00438-024-02128-3","DOIUrl":null,"url":null,"abstract":"<p><p>Familial exudative vitreoretinopathy (FEVR) is a severe inherited disease characterized by defective retinal vascular development. With genetic and clinical heterogeneity, FEVR can be inherited in different patterns and characterized by phenotypes ranging from moderate visual defects to complete vision loss. This study was conducted to unravel the genetic and functional etiology of a 4-month-old female FEVR patient. Targeted gene panel and Sanger sequencing were utilized for genetic evaluation. Luciferase assays, western blot, quantitive real-time PCR, and immunocytochemistry were performed to verify the functional defects in the identified candidate variant. Here, we report a 4-month-old girl with bilateral retinal folds and peripheral avascularization, and identified a novel frameshift heterozygous variant c.37dup (p.Leu13ProfsTer13) in NDP. In vitro experiments revealed that the Leu13ProfsTer13 variant led to a prominent decrease in protein levels instead of mRNA levels, resulting in compromised Norrin/β-catenin signaling activity. Human androgen receptor assay further revealed that a slight skewing of X chromosome inactivation could partially cause FEVR. Thus, the pathogenic mechanism by which heterozygous frameshift or nonsense variants in female carriers cause FEVR might largely result from a loss-of-function variant in one X chromosome allele and a slightly skewed X-inactivation. Further recruitment of more FEVR-affected females carrying NDP variants and genotype-phenotype correlation analysis can ultimately offer valuable information for the prognosis prediction of FEVR.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"32"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02128-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Familial exudative vitreoretinopathy (FEVR) is a severe inherited disease characterized by defective retinal vascular development. With genetic and clinical heterogeneity, FEVR can be inherited in different patterns and characterized by phenotypes ranging from moderate visual defects to complete vision loss. This study was conducted to unravel the genetic and functional etiology of a 4-month-old female FEVR patient. Targeted gene panel and Sanger sequencing were utilized for genetic evaluation. Luciferase assays, western blot, quantitive real-time PCR, and immunocytochemistry were performed to verify the functional defects in the identified candidate variant. Here, we report a 4-month-old girl with bilateral retinal folds and peripheral avascularization, and identified a novel frameshift heterozygous variant c.37dup (p.Leu13ProfsTer13) in NDP. In vitro experiments revealed that the Leu13ProfsTer13 variant led to a prominent decrease in protein levels instead of mRNA levels, resulting in compromised Norrin/β-catenin signaling activity. Human androgen receptor assay further revealed that a slight skewing of X chromosome inactivation could partially cause FEVR. Thus, the pathogenic mechanism by which heterozygous frameshift or nonsense variants in female carriers cause FEVR might largely result from a loss-of-function variant in one X chromosome allele and a slightly skewed X-inactivation. Further recruitment of more FEVR-affected females carrying NDP variants and genotype-phenotype correlation analysis can ultimately offer valuable information for the prognosis prediction of FEVR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
导致女性患者发生家族性渗出性玻璃体视网膜病变的 NDP 基因新型杂合子帧移位变体的特征。
家族性渗出性玻璃体视网膜病变(FEVR)是一种以视网膜血管发育缺陷为特征的严重遗传性疾病。家族性渗出性玻璃体视网膜病变具有遗传和临床异质性,可通过不同的模式遗传,其表型从中度视力缺陷到完全丧失视力不等。本研究旨在揭示一名 4 个月大的女性 FEVR 患者的遗传和功能病因。基因评估采用了靶向基因面板和桑格测序法。通过荧光素酶测定、Western 印迹、定量实时 PCR 和免疫细胞化学来验证已确定的候选变体的功能缺陷。在此,我们报告了一名患有双侧视网膜皱褶和外周血管缺失的 4 个月大女孩,并在 NDP 中发现了一个新的框架移位杂合变异 c.37dup(p.Leu13ProfsTer13)。体外实验显示,Leu13ProfsTer13变异导致蛋白水平而不是mRNA水平显著下降,从而导致Norrin/β-catenin信号活性受损。人类雄激素受体测定进一步表明,X 染色体失活的轻微偏斜可部分导致 FEVR。因此,女性携带者中的杂合框移变异或无义变异导致 FEVR 的致病机制可能主要来自于一个 X 染色体等位基因中的功能缺失变异和 X 染色体失活的轻微倾斜。进一步招募更多携带 NDP 变异的受 FEVR 影响的女性,并进行基因型-表型相关性分析,最终可为 FEVR 的预后预测提供有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
期刊最新文献
Investigating the genomic and metabolic abilities of PGPR Pseudomonas fluorescens in promoting plant growth and fire blight management. WTAP increases BMP2 expression to promote osteoblast differentiation and inhibit osteoblast senescence via m6A methylation of Sp1. A comprehensive genome-based analysis identifies the anti-cancerous role of the anoikis-related gene ADH1A in modulating the pathogenesis of breast cancer. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. High expression of ADAR mediated by OGT promotes chemoresistance in colorectal cancer through the A-to-I editing pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1