Evidence of zoonotic pathogens through biophysically induced genomic variance.

IF 7.2 2区 生物学 Q1 BIOPHYSICS Quarterly Reviews of Biophysics Pub Date : 2024-03-13 DOI:10.1017/S0033583524000039
Daniah Alsufyani
{"title":"Evidence of zoonotic pathogens through biophysically induced genomic variance.","authors":"Daniah Alsufyani","doi":"10.1017/S0033583524000039","DOIUrl":null,"url":null,"abstract":"<p><p>Zoonoses are infectious agents that are transmissible between animals and humans. Up to 60% of known infectious diseases and 75% of emergent diseases are zoonotic. Genomic variation between homeostatic populations provides a novel window into the effect of environmental pathogens on allelic distributions within the populations. Genodynamics is a biophysical approach utilizing developed metrics on biallelic single-nucleotide polymorphisms (SNPs) that can be used to quantify the adaptive influences due to pathogens. A genomic free energy that is minimized when overall population health is optimized describes the influence of environmental agents upon genomic variation. A double-blind exploration of over 100 thousand SNPs searching for smooth functional dependencies upon four zoonotic pathogens carried by four possible hosts amidst populations that live in their ancestral environments has been conducted. Exemplars that infectious agents can have significant adaptive influence on human populations are presented. One discussed SNP is likely associated with both adaptive and innate immune regulation. The adaptive response of another SNP suggests an intriguing connection between zoonoses and human cancers. The adaptive forces of the presented pathogens upon the human genome have been quantified.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583524000039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Zoonoses are infectious agents that are transmissible between animals and humans. Up to 60% of known infectious diseases and 75% of emergent diseases are zoonotic. Genomic variation between homeostatic populations provides a novel window into the effect of environmental pathogens on allelic distributions within the populations. Genodynamics is a biophysical approach utilizing developed metrics on biallelic single-nucleotide polymorphisms (SNPs) that can be used to quantify the adaptive influences due to pathogens. A genomic free energy that is minimized when overall population health is optimized describes the influence of environmental agents upon genomic variation. A double-blind exploration of over 100 thousand SNPs searching for smooth functional dependencies upon four zoonotic pathogens carried by four possible hosts amidst populations that live in their ancestral environments has been conducted. Exemplars that infectious agents can have significant adaptive influence on human populations are presented. One discussed SNP is likely associated with both adaptive and innate immune regulation. The adaptive response of another SNP suggests an intriguing connection between zoonoses and human cancers. The adaptive forces of the presented pathogens upon the human genome have been quantified.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过生物物理诱导的基因组变异证明人畜共患病病原体的存在。
人畜共患病是指可在动物和人类之间传播的传染性病原体。多达 60% 的已知传染病和 75% 的新发疾病是人畜共患疾病。同源种群之间的基因组变异为了解环境病原体对种群内等位基因分布的影响提供了一个新的窗口。基因动力学是一种生物物理方法,利用已开发的双等位基因单核苷酸多态性(SNPs)指标,可用于量化病原体造成的适应性影响。基因组自由能描述了环境因素对基因组变异的影响。我们对超过 10 万个 SNPs 进行了双盲探索,以寻找在其祖先环境中生活的人群对四种可能宿主携带的四种人畜共患病病原体的平滑功能依赖性。结果表明,传染性病原体对人类种群的适应性有重大影响。其中讨论的一个 SNP 可能与适应性免疫调节和先天性免疫调节都有关。另一个 SNP 的适应性反应表明,人畜共患病与人类癌症之间存在着耐人寻味的联系。本文对病原体对人类基因组的适应力进行了量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
期刊最新文献
Review of contemporary fluorescence correlation spectroscopy method in diverse solution studies. Optical scattering methods for the label-free analysis of single biomolecules. The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting. Protonation constants of endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solution: Unraveling molecular secrets. Solution-based biophysical characterization of conformation change in structure-switching aptamers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1