Elizabeth A Canning, Makita White, William B Davis
{"title":"Growth Mindset Messages from Instructors Improve Academic Performance Among First-Generation College Students.","authors":"Elizabeth A Canning, Makita White, William B Davis","doi":"10.1187/cbe.23-07-0131","DOIUrl":null,"url":null,"abstract":"<p><p>First-generation (FG) college students (i.e., those for whom neither parent/guardian obtained a bachelor's degree) experience more barriers in college, compared with continuing-generation students. These barriers are compounded by subtle messages from instructors that convey the idea that natural talent is necessary for success in scientific fields. In contrast, growth mindset messages communicate that ability can improve with effort, help-seeking, and using productive study strategies. In a large enrollment introductory biology course, students were randomly assigned to receive email messages from their instructor after the first two exams containing either a growth mindset or control message. The intervention improved grades in the course for everyone, on average, compared with control messages, and were especially beneficial for FG students. This increase in performance was partially mediated by increased activity accessing course materials on the course website. This study provides preliminary evidence that instructors communicating growth mindset messages can support FG students' performance.</p>","PeriodicalId":56321,"journal":{"name":"Cbe-Life Sciences Education","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cbe-Life Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1187/cbe.23-07-0131","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
First-generation (FG) college students (i.e., those for whom neither parent/guardian obtained a bachelor's degree) experience more barriers in college, compared with continuing-generation students. These barriers are compounded by subtle messages from instructors that convey the idea that natural talent is necessary for success in scientific fields. In contrast, growth mindset messages communicate that ability can improve with effort, help-seeking, and using productive study strategies. In a large enrollment introductory biology course, students were randomly assigned to receive email messages from their instructor after the first two exams containing either a growth mindset or control message. The intervention improved grades in the course for everyone, on average, compared with control messages, and were especially beneficial for FG students. This increase in performance was partially mediated by increased activity accessing course materials on the course website. This study provides preliminary evidence that instructors communicating growth mindset messages can support FG students' performance.
期刊介绍:
CBE—Life Sciences Education (LSE), a free, online quarterly journal, is published by the American Society for Cell Biology (ASCB). The journal was launched in spring 2002 as Cell Biology Education—A Journal of Life Science Education. The ASCB changed the name of the journal in spring 2006 to better reflect the breadth of its readership and the scope of its submissions.
LSE publishes peer-reviewed articles on life science education at the K–12, undergraduate, and graduate levels. The ASCB believes that learning in biology encompasses diverse fields, including math, chemistry, physics, engineering, computer science, and the interdisciplinary intersections of biology with these fields. Within biology, LSE focuses on how students are introduced to the study of life sciences, as well as approaches in cell biology, developmental biology, neuroscience, biochemistry, molecular biology, genetics, genomics, bioinformatics, and proteomics.