Federico Melli , Kostiantyn Vasko , Lorenzo Rosa , Fetah Benabid , Luca Vincetti
{"title":"Azimuthal Fourier decomposition for loss analysis of hollow-core tube lattice fibers part I: Ideal fibers","authors":"Federico Melli , Kostiantyn Vasko , Lorenzo Rosa , Fetah Benabid , Luca Vincetti","doi":"10.1016/j.rio.2024.100657","DOIUrl":null,"url":null,"abstract":"<div><p>This is the first part of two papers where we propose and apply a methodology for confinement loss analysis in tube lattice fibers (TLFs). The methodology is based on azimuthal Fourier decomposition (AFD) of the fiber’s cladding and core modes along the perimeters of the cladding tubes composing. This technique, combined with coupled mode theory, constitutes an effective approach to gain insight in the inhibited coupling waveguiding mechanism and design, along with fiber non-idealities impact on confinement loss. In this part I, we describe the approach and apply it to loss analysis of ideal TLFs. The approach is then applied to the analysis of the effects of tube thickness variation in part II.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124000543/pdfft?md5=31e652f8ec5bd92f37162f4dbbe7a8cb&pid=1-s2.0-S2666950124000543-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124000543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This is the first part of two papers where we propose and apply a methodology for confinement loss analysis in tube lattice fibers (TLFs). The methodology is based on azimuthal Fourier decomposition (AFD) of the fiber’s cladding and core modes along the perimeters of the cladding tubes composing. This technique, combined with coupled mode theory, constitutes an effective approach to gain insight in the inhibited coupling waveguiding mechanism and design, along with fiber non-idealities impact on confinement loss. In this part I, we describe the approach and apply it to loss analysis of ideal TLFs. The approach is then applied to the analysis of the effects of tube thickness variation in part II.