High performance computing to support land, climate, and user-oriented services: The HIGHLANDER Data Portal

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2024-03-13 DOI:10.1002/met.2166
Michele Bottazzi, Lucía Rodríguez-Muñoz, Beatrice Chiavarini, Cinzia Caroli, Giuseppe Trotta, Chiara Dellacasa, Gian Franco Marras, Margherita Montanari, Monia Santini, Marco Mancini, Alessandro D'Anca, Paola Mercogliano, Mario Raffa, Giulia Villani, Fausto Tomei, Nicola Loglisci, Estíbaliz Gascón, Timothy Hewson, Giovanni Chillemi, Riccardo Valentini, Damiano Gianelle, Elena Massarenti, Martina Forconi, Lucia Mazzoni, Gabriella Scipione
{"title":"High performance computing to support land, climate, and user-oriented services: The HIGHLANDER Data Portal","authors":"Michele Bottazzi,&nbsp;Lucía Rodríguez-Muñoz,&nbsp;Beatrice Chiavarini,&nbsp;Cinzia Caroli,&nbsp;Giuseppe Trotta,&nbsp;Chiara Dellacasa,&nbsp;Gian Franco Marras,&nbsp;Margherita Montanari,&nbsp;Monia Santini,&nbsp;Marco Mancini,&nbsp;Alessandro D'Anca,&nbsp;Paola Mercogliano,&nbsp;Mario Raffa,&nbsp;Giulia Villani,&nbsp;Fausto Tomei,&nbsp;Nicola Loglisci,&nbsp;Estíbaliz Gascón,&nbsp;Timothy Hewson,&nbsp;Giovanni Chillemi,&nbsp;Riccardo Valentini,&nbsp;Damiano Gianelle,&nbsp;Elena Massarenti,&nbsp;Martina Forconi,&nbsp;Lucia Mazzoni,&nbsp;Gabriella Scipione","doi":"10.1002/met.2166","DOIUrl":null,"url":null,"abstract":"<p>The Italian territory is located at the heart of one of the global hot spots of climate change, where the implementation of climate-smart land management practices is imperative to guarantee the present and future maintenance of ecosystem functions as well as the sustainability of human socioeconomic activities. The project HIGHLANDER (HIGH performance computing to support smart LAND sERvices) led by Cineca aims at building a comprehensive and multi-sector framework for land-management decision-making in Italy. The project relies on high quality information on different components of the landscape, with a focus on climate-driven processes, and state-of-the-art computing infrastructures. The HIGHLANDER Data Portal maximizes the impact of HIGHLANDER results by providing access to data products and services. In this article, we describe the architectural features of the platform, as well as the available HIGHLANDER datasets and downstream applications.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2166","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2166","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Italian territory is located at the heart of one of the global hot spots of climate change, where the implementation of climate-smart land management practices is imperative to guarantee the present and future maintenance of ecosystem functions as well as the sustainability of human socioeconomic activities. The project HIGHLANDER (HIGH performance computing to support smart LAND sERvices) led by Cineca aims at building a comprehensive and multi-sector framework for land-management decision-making in Italy. The project relies on high quality information on different components of the landscape, with a focus on climate-driven processes, and state-of-the-art computing infrastructures. The HIGHLANDER Data Portal maximizes the impact of HIGHLANDER results by providing access to data products and services. In this article, we describe the architectural features of the platform, as well as the available HIGHLANDER datasets and downstream applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能计算支持土地、气候和面向用户的服务:HIGHLANDER 数据门户网站
意大利领土位于全球气候变化热点地区的中心,必须实施气候智能型土地管理方法,以保证生态系统功能在当前和未来的维护以及人类社会经济活动的可持续性。由 Cineca 公司牵头的 HIGHLANDER(支持智能土地服务的高性能计算)项目旨在为意大利的土地管理决策建立一个综合性的多部门框架。该项目依赖于景观不同组成部分的高质量信息,重点关注气候驱动的过程和最先进的计算基础设施。HIGHLANDER 数据门户网站通过提供数据产品和服务,最大限度地扩大了 HIGHLANDER 成果的影响。在本文中,我们将介绍该平台的架构特点,以及可用的 HIGHLANDER 数据集和下游应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
Estimation of extreme wind speeds with different return periods in the Northwest Pacific Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India Improving blended probability forecasts with neural networks Correction to “Skilful probabilistic medium-range precipitation and temperature forecasts over Vietnam for the development of a future dengue early warning system” Drought forecasting with regionalization of climate variables and generalized linear model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1