{"title":"Impacts of soil storage on microbial parameters","authors":"Nathalie Fromin","doi":"10.5194/egusphere-2024-411","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> This review aims to determine the impact of soil storage on microbial parameters (abundance/biomass, activity and various diversity metrics). We analysed the literature dealing with the impact of storage practices (cold, freeze, dry, freeze-dry and ambient storage) on soil microbial parameters. A total of 73 articles were included in the analysis, representing 261 basic data (impact of a given storage practice on a microbial parameter). Globally, 74 % of these data showed significant impact of storage on the measured microbial parameters, as compared to those measured on fresh, non-stored soil samples. The storage practices showed various effects on the soil microbial parameters, with sometimes opposite effects across different soil types. For instance, various soil enzyme activities did not respond the same way to storage practices, even in a given soil type. There are currently too few studies to draw recommendations, but some studies suggest that the pedoclimatic context could be useful for choosing the best storage option, with soils that regularly undergo drought or freezing being less impacted by dry and freeze storage, respectively. I conclude that storage practices for soil samples, when unavoidable, should be carefully selected according to conditions that prevail in the native soil environment, to microbial parameters that are analysed (even though there is no consensus for a best practice), and with different storage practices for different microbial parameters if necessary.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"15 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-411","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. This review aims to determine the impact of soil storage on microbial parameters (abundance/biomass, activity and various diversity metrics). We analysed the literature dealing with the impact of storage practices (cold, freeze, dry, freeze-dry and ambient storage) on soil microbial parameters. A total of 73 articles were included in the analysis, representing 261 basic data (impact of a given storage practice on a microbial parameter). Globally, 74 % of these data showed significant impact of storage on the measured microbial parameters, as compared to those measured on fresh, non-stored soil samples. The storage practices showed various effects on the soil microbial parameters, with sometimes opposite effects across different soil types. For instance, various soil enzyme activities did not respond the same way to storage practices, even in a given soil type. There are currently too few studies to draw recommendations, but some studies suggest that the pedoclimatic context could be useful for choosing the best storage option, with soils that regularly undergo drought or freezing being less impacted by dry and freeze storage, respectively. I conclude that storage practices for soil samples, when unavoidable, should be carefully selected according to conditions that prevail in the native soil environment, to microbial parameters that are analysed (even though there is no consensus for a best practice), and with different storage practices for different microbial parameters if necessary.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).