{"title":"A semilinear Dirichlet problem involving the fractional Laplacian in R+ n","authors":"Yan Li","doi":"10.1515/ans-2023-0102","DOIUrl":null,"url":null,"abstract":"We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo stretchy=\"false\">∣</m:mo> <m:msub> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> ${\\mathbb{R}}_{+}^{n}=\\left\\{x\\in {\\mathbb{R}}^{n}\\mid {x}_{1}{ >}0\\right\\}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"2em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\"left\"> <m:mspace width=\"2em\" /> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width=\"2em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\"left\"> <m:mspace width=\"2em\" /> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width=\"2em\" /> <m:mi>x</m:mi> <m:mo>∉</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>.</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> \\begin{cases}\\quad \\hfill & {\\left(-{\\Delta}\\right)}^{s}u\\left(x\\right)=f\\left(u\\left(x\\right)\\right),\\qquad x\\in {\\mathbb{R}}_{+}^{n},\\hfill \\\\ \\quad \\hfill & \\qquad u\\left(x\\right){ >}0,\\qquad x\\in {\\mathbb{R}}_{+}^{n},\\hfill \\\\ \\quad \\hfill & \\qquad u\\left(x\\right)=0,\\qquad x\\notin {\\mathbb{R}}_{+}^{n}.\\hfill \\end{cases}. </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>. We prove the positive solutions are monotonic increasing in the <jats:italic>x</jats:italic> <jats:sub>1</jats:sub>-direction assuming <jats:italic>u</jats:italic>(<jats:italic>x</jats:italic>) grows no faster than |<jats:italic>x</jats:italic>|<jats:sup> <jats:italic>γ</jats:italic> </jats:sup> with <jats:italic>γ</jats:italic> ∈ (0, 2<jats:italic>s</jats:italic>) for |<jats:italic>x</jats:italic>| large. To start with, we develop a maximum principle on the narrow region. Then we apply a direct method of the moving planes for the fractional Laplacian to derive the monotonicity. As an application of the monotonicity result, we use it to prove nonexistence of bounded positive solutions in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\mathbb{R}}_{+}^{n}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> for <jats:italic>f</jats:italic>(<jats:italic>u</jats:italic>) = <jats:italic>u</jats:italic> <jats:sup> <jats:italic>p</jats:italic> </jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> </m:mrow> </m:math> <jats:tex-math> $p\\in \\left(1,\\frac{n-1+2s}{n-1-2s}\\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"26 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space R+n=x∈Rn∣x1>0 ${\mathbb{R}}_{+}^{n}=\left\{x\in {\mathbb{R}}^{n}\mid {x}_{1}{ >}0\right\}$ : (−Δ)su(x)=f(u(x)),x∈R+n,u(x)>0,x∈R+n,u(x)=0,x∉R+n. \begin{cases}\quad \hfill & {\left(-{\Delta}\right)}^{s}u\left(x\right)=f\left(u\left(x\right)\right),\qquad x\in {\mathbb{R}}_{+}^{n},\hfill \\ \quad \hfill & \qquad u\left(x\right){ >}0,\qquad x\in {\mathbb{R}}_{+}^{n},\hfill \\ \quad \hfill & \qquad u\left(x\right)=0,\qquad x\notin {\mathbb{R}}_{+}^{n}.\hfill \end{cases}. . We prove the positive solutions are monotonic increasing in the x1-direction assuming u(x) grows no faster than |x|γ with γ ∈ (0, 2s) for |x| large. To start with, we develop a maximum principle on the narrow region. Then we apply a direct method of the moving planes for the fractional Laplacian to derive the monotonicity. As an application of the monotonicity result, we use it to prove nonexistence of bounded positive solutions in R+n ${\mathbb{R}}_{+}^{n}$ for f(u) = up, p∈1,n−1+2sn−1−2s $p\in \left(1,\frac{n-1+2s}{n-1-2s}\right)$ .
我们研究涉及上半空间 R + n = x ∈ R n ∣ x 1 > 0 ${mathbb{R}}_{+}^{n}=\left\{x\in {mathbb{R}}^{n}\mid {x}_{1}{ >}0\right\}$ : ( - Δ ) s u ( x ) = f ( u ( x ) ) , x ∈ R + n , u ( x ) > 0 , x ∈ R + n , u ( x ) = 0 , x ∉ R + n 。 \begin{cases}\quad \hfill & {\left(-{\Delta}\right)}^{s}u\left(x\right)=f\left(u\left(x\right)\right),\qquad x\in {mathbb{R}}_{+}^{n},\hfill \\quad \hfill &;\qquad u\left(x\right){ >}0,\qquad x\in {\mathbb{R}}_{+}^{n},\hfill \\quad \hfill & \qquad u\left(x\right)=0,\qquad x\notin {\mathbb{R}}_{+}^{n}.\hfill \end{cases}. .我们证明正解在 x 1 方向上是单调递增的,假设 u(x) 的增长速度不超过 |x| γ,且 γ ∈ (0, 2s)为 |x| 大。首先,我们建立了狭长区域的最大原则。然后,我们应用分数拉普拉卡方移动平面的直接方法来推导单调性。作为单调性结果的一个应用,我们用它来证明 f(u) = u p , p∈ 1 , n - 1 + 2 s n - 1 - 2 s $p\in \left(1,\frac{n-1+2s}{n-1-2s}\right)$ 的有界正解在 R + n ${mathbb{R}}_{+}^{n}$ 中不存在。
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.