{"title":"Model-Based Graph Reinforcement Learning for Inductive Traffic Signal Control","authors":"François-Xavier Devailly;Denis Larocque;Laurent Charlin","doi":"10.1109/OJITS.2024.3376583","DOIUrl":null,"url":null,"abstract":"We introduce MuJAM, an adaptive traffic signal control method which leverages model-based reinforcement learning to 1) extend recent generalization efforts (to road network architectures and traffic distributions) further by allowing a generalization to the controllers’ constraints (cyclic and acyclic policies), 2) improve performance and data efficiency over related model-free approaches, and 3) enable explicit coordination at scale for the first time. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as a recent transferable approach.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"238-250"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10470423","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10470423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce MuJAM, an adaptive traffic signal control method which leverages model-based reinforcement learning to 1) extend recent generalization efforts (to road network architectures and traffic distributions) further by allowing a generalization to the controllers’ constraints (cyclic and acyclic policies), 2) improve performance and data efficiency over related model-free approaches, and 3) enable explicit coordination at scale for the first time. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as a recent transferable approach.