Artificial intelligence in gastrointestinal endoscopy: a comprehensive review.

IF 2.1 Q3 GASTROENTEROLOGY & HEPATOLOGY Annals of Gastroenterology Pub Date : 2024-03-01 Epub Date: 2024-02-14 DOI:10.20524/aog.2024.0861
Hassam Ali, Muhammad Ali Muzammil, Dushyant Singh Dahiya, Farishta Ali, Shafay Yasin, Waqar Hanif, Manesh Kumar Gangwani, Muhammad Aziz, Muhammad Khalaf, Debargha Basuli, Mohammad Al-Haddad
{"title":"Artificial intelligence in gastrointestinal endoscopy: a comprehensive review.","authors":"Hassam Ali, Muhammad Ali Muzammil, Dushyant Singh Dahiya, Farishta Ali, Shafay Yasin, Waqar Hanif, Manesh Kumar Gangwani, Muhammad Aziz, Muhammad Khalaf, Debargha Basuli, Mohammad Al-Haddad","doi":"10.20524/aog.2024.0861","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating artificial intelligence (AI) into gastrointestinal (GI) endoscopy heralds a significant leap forward in managing GI disorders. AI-enabled applications, such as computer-aided detection and computer-aided diagnosis, have significantly advanced GI endoscopy, improving early detection, diagnosis and personalized treatment planning. AI algorithms have shown promise in the analysis of endoscopic data, critical in conditions with traditionally low diagnostic sensitivity, such as indeterminate biliary strictures and pancreatic cancer. Convolutional neural networks can markedly improve the diagnostic process when integrated with cholangioscopy or endoscopic ultrasound, especially in the detection of malignant biliary strictures and cholangiocarcinoma. AI's capacity to analyze complex image data and offer real-time feedback can streamline endoscopic procedures, reduce the need for invasive biopsies, and decrease associated adverse events. However, the clinical implementation of AI faces challenges, including data quality issues and the risk of overfitting, underscoring the need for further research and validation. As the technology matures, AI is poised to become an indispensable tool in the gastroenterologist's arsenal, necessitating the integration of robust, validated AI applications into routine clinical practice. Despite remarkable advances, challenges such as operator-dependent accuracy and the need for intricate examinations persist. This review delves into the transformative role of AI in enhancing endoscopic diagnostic accuracy, particularly highlighting its utility in the early detection and personalized treatment of GI diseases.</p>","PeriodicalId":7978,"journal":{"name":"Annals of Gastroenterology","volume":"37 2","pages":"133-141"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20524/aog.2024.0861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating artificial intelligence (AI) into gastrointestinal (GI) endoscopy heralds a significant leap forward in managing GI disorders. AI-enabled applications, such as computer-aided detection and computer-aided diagnosis, have significantly advanced GI endoscopy, improving early detection, diagnosis and personalized treatment planning. AI algorithms have shown promise in the analysis of endoscopic data, critical in conditions with traditionally low diagnostic sensitivity, such as indeterminate biliary strictures and pancreatic cancer. Convolutional neural networks can markedly improve the diagnostic process when integrated with cholangioscopy or endoscopic ultrasound, especially in the detection of malignant biliary strictures and cholangiocarcinoma. AI's capacity to analyze complex image data and offer real-time feedback can streamline endoscopic procedures, reduce the need for invasive biopsies, and decrease associated adverse events. However, the clinical implementation of AI faces challenges, including data quality issues and the risk of overfitting, underscoring the need for further research and validation. As the technology matures, AI is poised to become an indispensable tool in the gastroenterologist's arsenal, necessitating the integration of robust, validated AI applications into routine clinical practice. Despite remarkable advances, challenges such as operator-dependent accuracy and the need for intricate examinations persist. This review delves into the transformative role of AI in enhancing endoscopic diagnostic accuracy, particularly highlighting its utility in the early detection and personalized treatment of GI diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消化道内窥镜检查中的人工智能:综合评述。
将人工智能(AI)融入消化道(GI)内窥镜检查,预示着消化道疾病管理的重大飞跃。计算机辅助检测和计算机辅助诊断等人工智能应用大大推进了消化内镜检查的发展,改善了早期检测、诊断和个性化治疗计划。人工智能算法在分析内窥镜数据方面大有可为,这对于传统诊断灵敏度较低的病症(如不确定的胆道狭窄和胰腺癌)至关重要。卷积神经网络与胆道镜或内窥镜超声波相结合,可以明显改善诊断过程,尤其是在检测恶性胆道狭窄和胆管癌方面。人工智能分析复杂图像数据并提供实时反馈的能力可以简化内窥镜手术,减少对侵入性活检的需求,并减少相关不良事件。然而,人工智能的临床应用面临着挑战,包括数据质量问题和过度拟合的风险,这凸显了进一步研究和验证的必要性。随着技术的成熟,人工智能有望成为消化内科医生不可或缺的工具,这就需要将稳健、经过验证的人工智能应用整合到常规临床实践中。尽管取得了长足的进步,但仍存在一些挑战,如准确性取决于操作者以及需要进行复杂的检查。本综述深入探讨了人工智能在提高内窥镜诊断准确性方面的变革性作用,特别强调了它在消化道疾病的早期检测和个性化治疗方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Gastroenterology
Annals of Gastroenterology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
4.30
自引率
0.00%
发文量
58
期刊最新文献
Authors' reply. Clinical features and outcomes of total pancreatic lipomatosis with chronic pancreatitis: a case series. Endoscopic management of ileal pouch-anal anastomosis strictures: meta-analysis and systematic literature review. Gastrointestinal cancer incidence after lung transplantation in sarcoidosis patients. Landscape of B lymphocytes and plasma cells in digestive tract carcinomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1