Mechanical Stimulation of Adipose-Derived Stromal/Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.
Rachel C Nordberg, Josie C Bodle, Elizabeth G Loboa
{"title":"Mechanical Stimulation of Adipose-Derived Stromal/Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.","authors":"Rachel C Nordberg, Josie C Bodle, Elizabeth G Loboa","doi":"10.1007/978-1-0716-3762-3_25","DOIUrl":null,"url":null,"abstract":"<p><p>It is critical that human adipose-derived stromal/stem cell (hASC) tissue engineering therapies possess appropriate mechanical properties in order to restore the function of the load-bearing tissues of the musculoskeletal system. In an effort to elucidate hASC response to mechanical stimulation and develop mechanically robust tissue-engineered constructs, recent research has utilized a variety of mechanical loading paradigms, including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter will describe the methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3762-3_25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
It is critical that human adipose-derived stromal/stem cell (hASC) tissue engineering therapies possess appropriate mechanical properties in order to restore the function of the load-bearing tissues of the musculoskeletal system. In an effort to elucidate hASC response to mechanical stimulation and develop mechanically robust tissue-engineered constructs, recent research has utilized a variety of mechanical loading paradigms, including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter will describe the methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.