Ruijia Yang, Jingchun Feng, Jiansong Tang, Yong Sun
{"title":"Risk assessment and classification prediction for water environment treatment PPP projects.","authors":"Ruijia Yang, Jingchun Feng, Jiansong Tang, Yong Sun","doi":"10.2166/wst.2024.052","DOIUrl":null,"url":null,"abstract":"<p><p>Water treatment public-private partnership (PPP) projects are pivotal for sustainable water management but are often challenged by complex risk factors. Efficient risk management in these projects is crucial, yet traditional methodologies often fall short of addressing the dynamic and intricate nature of these risks. Addressing this gap, this comprehensive study introduces an advanced risk classification prediction model tailored for water treatment PPP projects, aimed at enhancing risk management capabilities. The proposed model encompasses an intricate evaluation of crucial risk areas: the natural and ecological environments, socio-economic factors, and engineering entities. It delves into the complex relationships between these risk elements and the overall risk profile of projects. Grounded in a sophisticated ensemble learning framework employing stacking, our model is further refined through a weighted voting mechanism, significantly elevating its predictive accuracy. Rigorous validation using data from the Jiujiang City water environment system project Phase I confirms the model's superiority over standard machine learning models. The development of this model marks a significant stride in risk classification for water treatment PPP projects, offering a powerful tool for enhancing risk management practices. Beyond accurately predicting project risks, this model also aids in developing effective government risk management strategies.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"89 5","pages":"1264-1281"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.052","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water treatment public-private partnership (PPP) projects are pivotal for sustainable water management but are often challenged by complex risk factors. Efficient risk management in these projects is crucial, yet traditional methodologies often fall short of addressing the dynamic and intricate nature of these risks. Addressing this gap, this comprehensive study introduces an advanced risk classification prediction model tailored for water treatment PPP projects, aimed at enhancing risk management capabilities. The proposed model encompasses an intricate evaluation of crucial risk areas: the natural and ecological environments, socio-economic factors, and engineering entities. It delves into the complex relationships between these risk elements and the overall risk profile of projects. Grounded in a sophisticated ensemble learning framework employing stacking, our model is further refined through a weighted voting mechanism, significantly elevating its predictive accuracy. Rigorous validation using data from the Jiujiang City water environment system project Phase I confirms the model's superiority over standard machine learning models. The development of this model marks a significant stride in risk classification for water treatment PPP projects, offering a powerful tool for enhancing risk management practices. Beyond accurately predicting project risks, this model also aids in developing effective government risk management strategies.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.