Remy Pasco , Spencer J. Fox , Michael Lachmann , Lauren Ancel Meyers
{"title":"Effectiveness of interventions to reduce COVID-19 transmission in schools","authors":"Remy Pasco , Spencer J. Fox , Michael Lachmann , Lauren Ancel Meyers","doi":"10.1016/j.epidem.2024.100762","DOIUrl":null,"url":null,"abstract":"<div><p>School reopenings in 2021 and 2022 coincided with the rapid emergence of new SARS-CoV-2 variants in the United States. In-school mitigation efforts varied, depending on local COVID-19 mandates and resources. Using a stochastic age-stratified agent-based model of SARS-CoV-2 transmission, we estimate the impacts of multiple in-school strategies on both infection rates and absenteeism, relative to a baseline scenario in which only symptomatic cases are tested and positive tests trigger a 10-day isolation of the case and 10-day quarantine of their household and classroom. We find that monthly asymptomatic screening coupled with the 10-day isolation and quarantine period is expected to avert 55.4% of infections while increasing absenteeism by 104.3%. Replacing quarantine with test-to-stay would reduce absenteeism by 66.3% (while hardly impacting infection rates), but would require roughly 10-fold more testing resources. Alternatively, vaccination or mask wearing by 50% of the student body is expected to avert 54.1% or 43.1% of infections while decreasing absenteeism by 34.1% or 27.4%, respectively. Separating students into classrooms based on mask usage is expected to reduce infection risks among those who wear masks (by 23.1%), exacerbate risks among those who do not (by 27.8%), but have little impact on overall risk. A combined strategy of monthly screening, household and classroom quarantine, a 50% vaccination rate, and a 50% masking rate (in mixed classrooms) is expected to avert 81.7% of infections while increasing absenteeism by 90.6%. During future public health emergencies, such analyses can inform the rapid design of resource-constrained strategies that mitigate both public health and educational risks.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100762"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000239/pdfft?md5=b0937aa65f753c8e2fa877bb7cbb5376&pid=1-s2.0-S1755436524000239-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436524000239","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
School reopenings in 2021 and 2022 coincided with the rapid emergence of new SARS-CoV-2 variants in the United States. In-school mitigation efforts varied, depending on local COVID-19 mandates and resources. Using a stochastic age-stratified agent-based model of SARS-CoV-2 transmission, we estimate the impacts of multiple in-school strategies on both infection rates and absenteeism, relative to a baseline scenario in which only symptomatic cases are tested and positive tests trigger a 10-day isolation of the case and 10-day quarantine of their household and classroom. We find that monthly asymptomatic screening coupled with the 10-day isolation and quarantine period is expected to avert 55.4% of infections while increasing absenteeism by 104.3%. Replacing quarantine with test-to-stay would reduce absenteeism by 66.3% (while hardly impacting infection rates), but would require roughly 10-fold more testing resources. Alternatively, vaccination or mask wearing by 50% of the student body is expected to avert 54.1% or 43.1% of infections while decreasing absenteeism by 34.1% or 27.4%, respectively. Separating students into classrooms based on mask usage is expected to reduce infection risks among those who wear masks (by 23.1%), exacerbate risks among those who do not (by 27.8%), but have little impact on overall risk. A combined strategy of monthly screening, household and classroom quarantine, a 50% vaccination rate, and a 50% masking rate (in mixed classrooms) is expected to avert 81.7% of infections while increasing absenteeism by 90.6%. During future public health emergencies, such analyses can inform the rapid design of resource-constrained strategies that mitigate both public health and educational risks.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.