Simranjeet Singh, Amith G. Anil, Basavaraju Uppara, Sushant K. Behera, Bidisha Nath, Pavithra N, Shipra Bhati, Joginder Singh, Nadeem A. Khan, Praveen C. Ramamurthy
{"title":"Adsorption and DFT investigations of Cr(VI) removal using nanocrystals decorated with graphene oxide","authors":"Simranjeet Singh, Amith G. Anil, Basavaraju Uppara, Sushant K. Behera, Bidisha Nath, Pavithra N, Shipra Bhati, Joginder Singh, Nadeem A. Khan, Praveen C. Ramamurthy","doi":"10.1038/s41545-024-00306-9","DOIUrl":null,"url":null,"abstract":"In this research, a solvothermal approach is introduced to synthesize a metal-organic frameworks (MOFs) nanocomposite (GO/UiO-66-NDC) for the removal of Cr(VI) from water. A comprehensive analysis was performed to understand the physical, chemical, and structural properties of the MOF nanocomposite. The adsorption behavior of Cr(VI) was investigated by changing various parameters, such as pH, dosage, and concentration, to determine isotherms, thermodynamics, and kinetics. The results showed that the nanocomposite had a high tolerance to pH and thermal stability, with a high adsorption capacity of 157.23 mg g−1 for Cr(VI) at pH 3 due to the presence of zirconium oxide clusters. The density functional theory simulations showed that the nanocomposite had ten times more dynamic delocalized surface states, which enhanced the adsorption capacity and agreed with the experimental results. Furthermore, the nanocomposite exhibited better regeneration performance compared to previously reported materials, making it a promising super-adsorbent for removing Cr(VI) from water.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00306-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00306-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a solvothermal approach is introduced to synthesize a metal-organic frameworks (MOFs) nanocomposite (GO/UiO-66-NDC) for the removal of Cr(VI) from water. A comprehensive analysis was performed to understand the physical, chemical, and structural properties of the MOF nanocomposite. The adsorption behavior of Cr(VI) was investigated by changing various parameters, such as pH, dosage, and concentration, to determine isotherms, thermodynamics, and kinetics. The results showed that the nanocomposite had a high tolerance to pH and thermal stability, with a high adsorption capacity of 157.23 mg g−1 for Cr(VI) at pH 3 due to the presence of zirconium oxide clusters. The density functional theory simulations showed that the nanocomposite had ten times more dynamic delocalized surface states, which enhanced the adsorption capacity and agreed with the experimental results. Furthermore, the nanocomposite exhibited better regeneration performance compared to previously reported materials, making it a promising super-adsorbent for removing Cr(VI) from water.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.