Upper limit on the acceleration of a quantum evolution in projective Hilbert space

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL International Journal of Geometric Methods in Modern Physics Pub Date : 2024-02-15 DOI:10.1142/s0219887824400097
Paul M. Alsing, Carlo Cafaro
{"title":"Upper limit on the acceleration of a quantum evolution in projective Hilbert space","authors":"Paul M. Alsing, Carlo Cafaro","doi":"10.1142/s0219887824400097","DOIUrl":null,"url":null,"abstract":"<p>It is remarkable that Heisenberg’s position-momentum uncertainty relation leads to the existence of a maximal acceleration for a physical particle in the context of a geometric reformulation of quantum mechanics. It is also known that the maximal acceleration of a quantum particle is related to the magnitude of the speed of transportation in projective Hilbert space. In this paper, inspired by the study of geometric aspects of quantum evolution by means of the notions of curvature and torsion, we derive an upper bound for the rate of change of the speed of transportation in an arbitrary finite-dimensional projective Hilbert space. The evolution of the physical system being in a pure quantum state is assumed to be governed by an arbitrary time-varying Hermitian Hamiltonian operator. Our derivation, in analogy to the inequalities obtained by L. D. Landau in the theory of fluctuations by means of general commutation relations of quantum-mechanical origin, relies upon a generalization of Heisenberg’s uncertainty relation. We show that the acceleration squared of a quantum evolution in projective space is upper bounded by the variance of the temporal rate of change of the Hamiltonian operator. Moreover, focusing for illustrative purposes on the lower-dimensional case of a single spin qubit immersed in an arbitrarily time-varying magnetic field, we discuss the optimal geometric configuration of the magnetic field that yields maximal acceleration along with vanishing curvature and unit geodesic efficiency in projective Hilbert space. Finally, we comment on the consequences that our upper bound imposes on the limit at which one can perform fast manipulations of quantum systems to mitigate dissipative effects and/or obtain a target state in a shorter time.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"67 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824400097","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is remarkable that Heisenberg’s position-momentum uncertainty relation leads to the existence of a maximal acceleration for a physical particle in the context of a geometric reformulation of quantum mechanics. It is also known that the maximal acceleration of a quantum particle is related to the magnitude of the speed of transportation in projective Hilbert space. In this paper, inspired by the study of geometric aspects of quantum evolution by means of the notions of curvature and torsion, we derive an upper bound for the rate of change of the speed of transportation in an arbitrary finite-dimensional projective Hilbert space. The evolution of the physical system being in a pure quantum state is assumed to be governed by an arbitrary time-varying Hermitian Hamiltonian operator. Our derivation, in analogy to the inequalities obtained by L. D. Landau in the theory of fluctuations by means of general commutation relations of quantum-mechanical origin, relies upon a generalization of Heisenberg’s uncertainty relation. We show that the acceleration squared of a quantum evolution in projective space is upper bounded by the variance of the temporal rate of change of the Hamiltonian operator. Moreover, focusing for illustrative purposes on the lower-dimensional case of a single spin qubit immersed in an arbitrarily time-varying magnetic field, we discuss the optimal geometric configuration of the magnetic field that yields maximal acceleration along with vanishing curvature and unit geodesic efficiency in projective Hilbert space. Finally, we comment on the consequences that our upper bound imposes on the limit at which one can perform fast manipulations of quantum systems to mitigate dissipative effects and/or obtain a target state in a shorter time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
投影希尔伯特空间量子演化加速度的上限
值得注意的是,海森堡的位置-动量不确定关系导致在量子力学的几何重述中存在物理粒子的最大加速度。人们还知道,量子粒子的最大加速度与投影希尔伯特空间中的运输速度大小有关。本文受到利用曲率和扭转概念研究量子演化几何方面的启发,推导出了任意有限维投影希尔伯特空间中运移速度变化率的上界。假定处于纯量子态的物理系统的演化受任意时变赫密顿哈密顿算子支配。我们的推导与兰道(L. D. Landau)在波动理论中通过量子力学来源的一般换向关系获得的不等式类似,依赖于海森堡不确定性关系的广义化。我们证明,投影空间中量子演化的加速度平方的上限是哈密顿算子时间变化率的方差。此外,为了说明问题,我们重点讨论了浸没在任意时变磁场中的单个自旋量子比特的低维情况,讨论了在投影希尔伯特空间中产生最大加速度、曲率消失和单位大地效率的最佳磁场几何配置。最后,我们评论了我们的上界对极限的影响,在这个极限下,我们可以对量子系统进行快速操作,以减轻耗散效应和/或在更短的时间内获得目标状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
期刊最新文献
Wormhole inducing exponential expansion in R2 gravity Potentials on the conformally compactified Minkowski spacetime and their application to quark deconfinement Cosmological solutions in the Brans–Dicke theory via invariants of symmetry groups Space-time entropy, space of singularities and gravity origin: A case study Gravitational lensing in a spacetime with cosmic string within the Eddington-inspired Born–Infeld gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1