A centered limited finite volume approximation of the momentum convection operator for low-order nonconforming face-centered discretizations

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal for Numerical Methods in Fluids Pub Date : 2024-03-11 DOI:10.1002/fld.5276
A. Brunel, R. Herbin, J.-C. Latché
{"title":"A centered limited finite volume approximation of the momentum convection operator for low-order nonconforming face-centered discretizations","authors":"A. Brunel,&nbsp;R. Herbin,&nbsp;J.-C. Latché","doi":"10.1002/fld.5276","DOIUrl":null,"url":null,"abstract":"<p>We propose in this article a discretization of the momentum convection operator for fluid flow simulations on quadrangular or generalized hexahedral meshes. The space discretization is performed by the low-order nonconforming Rannacher–Turek finite element: the scalar unknowns are associated with the cells of the mesh while the velocities unknowns are associated with the edges or faces. The momentum convection operator is of finite volume type, and its expression is derived, as in MUSCL schemes, by a two-step technique: <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ (i) $$</annotation>\n </semantics></math> computation of a tentative flux, here, with a centered approximation of the velocity, and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ (ii) $$</annotation>\n </semantics></math> limitation of this flux using monotonicity arguments. The limitation procedure is of algebraic type, in the sense that its does not invoke any slope reconstruction, and is independent from the geometry of the cells. The derived discrete convection operator applies both to constant or variable density flows and may thus be implemented in a scheme for incompressible or compressible flows. To achieve this goal, we derive a discrete analogue of the computation <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mspace></mspace>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>∂</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>ρ</mi>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>+</mo>\n <mtext>div</mtext>\n <mo>(</mo>\n <mi>ρ</mi>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mi>u</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n <msub>\n <mrow>\n <mi>∂</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>ρ</mi>\n <msubsup>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mo>)</mo>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n <mtext>div</mtext>\n <mo>(</mo>\n <mi>ρ</mi>\n <msubsup>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {u}_i\\kern0.3em \\Big({\\partial}_t\\left(\\rho {u}_i\\right)+\\operatorname{div}\\left(\\rho {u}_i\\boldsymbol{u}\\right)=\\frac{1}{2}{\\partial}_t\\left(\\rho {u}_i^2\\right)+\\frac{1}{2}\\operatorname{div}\\left(\\rho {u}_i^2\\boldsymbol{u}\\right) $$</annotation>\n </semantics></math> (with <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{u} $$</annotation>\n </semantics></math> the velocity, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {u}_i $$</annotation>\n </semantics></math> one of its component, <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <annotation>$$ \\rho $$</annotation>\n </semantics></math> the density, and assuming that the mass balance holds) and discuss two applications of this result: first, we obtain stability results for a semi-implicit in time scheme for incompressible and barotropic compressible flows; second, we build a consistent, semi-implicit in time scheme that is based on the discretization of the internal energy balance rather than the total energy. The performance of the proposed discrete convection operator is assessed by numerical tests on the incompressible Navier–Stokes equations, the barotropic and the full compressible Navier–Stokes equations and the compressible Euler equations.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5276","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5276","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose in this article a discretization of the momentum convection operator for fluid flow simulations on quadrangular or generalized hexahedral meshes. The space discretization is performed by the low-order nonconforming Rannacher–Turek finite element: the scalar unknowns are associated with the cells of the mesh while the velocities unknowns are associated with the edges or faces. The momentum convection operator is of finite volume type, and its expression is derived, as in MUSCL schemes, by a two-step technique: ( i ) $$ (i) $$ computation of a tentative flux, here, with a centered approximation of the velocity, and ( i i ) $$ (ii) $$ limitation of this flux using monotonicity arguments. The limitation procedure is of algebraic type, in the sense that its does not invoke any slope reconstruction, and is independent from the geometry of the cells. The derived discrete convection operator applies both to constant or variable density flows and may thus be implemented in a scheme for incompressible or compressible flows. To achieve this goal, we derive a discrete analogue of the computation u i ( t ( ρ u i ) + div ( ρ u i u ) = 1 2 t ( ρ u i 2 ) + 1 2 div ( ρ u i 2 u ) $$ {u}_i\kern0.3em \Big({\partial}_t\left(\rho {u}_i\right)+\operatorname{div}\left(\rho {u}_i\boldsymbol{u}\right)=\frac{1}{2}{\partial}_t\left(\rho {u}_i^2\right)+\frac{1}{2}\operatorname{div}\left(\rho {u}_i^2\boldsymbol{u}\right) $$ (with u $$ \boldsymbol{u} $$ the velocity, u i $$ {u}_i $$ one of its component, ρ $$ \rho $$ the density, and assuming that the mass balance holds) and discuss two applications of this result: first, we obtain stability results for a semi-implicit in time scheme for incompressible and barotropic compressible flows; second, we build a consistent, semi-implicit in time scheme that is based on the discretization of the internal energy balance rather than the total energy. The performance of the proposed discrete convection operator is assessed by numerical tests on the incompressible Navier–Stokes equations, the barotropic and the full compressible Navier–Stokes equations and the compressible Euler equations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低阶不符合面心离散的动量对流算子的中心限定有限体积近似值
我们在本文中提出了一种动量对流算子的离散化方法,用于在四面体或广义六面体网格上进行流体流动模拟。空间离散化由低阶非服从 Rannacher-Turek 有限元完成:标量未知量与网格单元相关联,而速度未知量与边或面相关联。动量对流算子属于有限体积类型,其表达式与 MUSCL 方案一样,通过以下两步技术得出:(i)$$ (i) $$ 计算暂定通量(此处为速度的中心近似值);(ii)$$ (ii) $$ 使用单调性论据限制该通量。限制过程属于代数类型,即不需要任何斜率重构,并且与单元的几何形状无关。推导出的离散对流算子既适用于恒定密度流,也适用于可变密度流,因此可以在不可压缩流或可压缩流方案中实施。为了实现这一目标,我们推导了计算的离散模拟ui(∂t(ρui)+div(ρuiu)=12∂t(ρui2)+12div(ρui2u)$$ {u}_i\kern0.3em \Big({\partial}_t\left(\rho {u}_i\right)+\operatorname{div}\left(\rho {u}_i\boldsymbol{u}\right)=\frac{1}{2}{\partial}_t\left(\rho{u}_i^2\right)+\frac{1}{2}\operatorname{div}\left(\rho {u}_i^2\boldsymbol{u}\right) $$ (其中 u$$ \boldsymbol{u} $$ 是速度、ui$$ {u}_i $$ 其分量之一,ρ$$ \rho $$ 密度,并假设质量平衡成立),并讨论这一结果的两个应用:首先,我们获得了不可压缩流和各向同性可压缩流的半隐式时间方案的稳定性结果;其次,我们建立了一个一致的半隐式时间方案,该方案基于内部能量平衡而非总能量的离散化。通过对不可压缩 Navier-Stokes 方程、各向气压和完全可压缩 Navier-Stokes 方程以及可压缩欧拉方程进行数值测试,评估了所提出的离散对流算子的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
期刊最新文献
Semi‐implicit Lagrangian Voronoi approximation for the incompressible Navier–Stokes equations A new non‐equilibrium modification of the k−ω$$ k-\omega $$ turbulence model for supersonic turbulent flows with transverse jet Response surface method‐based hydraulic performance optimization of a single‐stage centrifugal pump Development of a new solver for homogenous mixture based on regularized gas dynamic equation system Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1