Mechanisms of Pore-Clogging Using a High-Resolution CFD-DEM Colloid Transport Model

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Transport in Porous Media Pub Date : 2024-03-13 DOI:10.1007/s11242-024-02072-1
Shitao Liu, Igor Shikhov, Christoph Arns
{"title":"Mechanisms of Pore-Clogging Using a High-Resolution CFD-DEM Colloid Transport Model","authors":"Shitao Liu,&nbsp;Igor Shikhov,&nbsp;Christoph Arns","doi":"10.1007/s11242-024-02072-1","DOIUrl":null,"url":null,"abstract":"<div><p>Colloidal transport and clogging in porous media is a phenomenon of critical importance in many branches of applied sciences and engineering. It involves multiple types of interactions that span from the sub-colloid scale (electrochemical interactions) up to the pore-scale (bridging), thus challenging the development of representative modelling. So far published simulation results of colloidal or particulate transport are based on either reduced set of forces or spatial dimensions. Here we present an approach enabling to overcome both computational and physical limitations posed by a problem of 3D colloidal transport in porous media. An adaptive octree mesh is introduced to a coupled CFD and DEM method while enabling tracking of individual colloids. Flow fields are calculated at a coarser scale throughout the domain, and at fine-scale around colloids. The approach accounts for all major interactions in such a system: elastic, electrostatic, and hydrodynamic forces acting between colloids, as well as colloids and the collector surface. The method is demonstrated for a single throat model made of four spherical segments, and the impact of clogging is reported in terms of the evolution of the critical path diameter for percolation and permeability. We identified four stages of clogging development depending on position and time of individual colloid entrapment, which in turn correlates to a cluster evolution and local transport.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"831 - 851"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02072-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02072-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal transport and clogging in porous media is a phenomenon of critical importance in many branches of applied sciences and engineering. It involves multiple types of interactions that span from the sub-colloid scale (electrochemical interactions) up to the pore-scale (bridging), thus challenging the development of representative modelling. So far published simulation results of colloidal or particulate transport are based on either reduced set of forces or spatial dimensions. Here we present an approach enabling to overcome both computational and physical limitations posed by a problem of 3D colloidal transport in porous media. An adaptive octree mesh is introduced to a coupled CFD and DEM method while enabling tracking of individual colloids. Flow fields are calculated at a coarser scale throughout the domain, and at fine-scale around colloids. The approach accounts for all major interactions in such a system: elastic, electrostatic, and hydrodynamic forces acting between colloids, as well as colloids and the collector surface. The method is demonstrated for a single throat model made of four spherical segments, and the impact of clogging is reported in terms of the evolution of the critical path diameter for percolation and permeability. We identified four stages of clogging development depending on position and time of individual colloid entrapment, which in turn correlates to a cluster evolution and local transport.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高分辨率 CFD-DEM 胶体输送模型分析孔隙积水机理
多孔介质中的胶体迁移和堵塞现象在应用科学和工程学的许多分支中都至关重要。它涉及从亚胶体尺度(电化学相互作用)到孔隙尺度(架桥)的多种类型的相互作用,因此对开发具有代表性的模型提出了挑战。迄今为止,已发表的胶体或微粒传输模拟结果都是基于力或空间维度的缩减集。在此,我们提出一种方法,可以克服多孔介质中三维胶体迁移问题带来的计算和物理限制。我们将自适应八叉网格引入耦合 CFD 和 DEM 方法,同时实现对单个胶体的跟踪。流场在整个域中以较粗的尺度计算,在胶体周围以较细的尺度计算。该方法考虑到了此类系统中的所有主要相互作用:胶体之间的弹性力、静电力和流体动力,以及胶体和收集器表面。该方法在由四个球形部分组成的单喉管模型中进行了演示,并从渗流和渗透性临界路径直径的演变角度报告了堵塞的影响。我们确定了堵塞发展的四个阶段,这取决于单个胶体被截留的位置和时间,进而与集束演变和局部传输相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
期刊最新文献
On the Viscous Crossflow During the Foam Displacement in Two-Layered Porous Media Python Workflow for Segmenting Multiphase Flow in Porous Rocks An Improved Scheme for the Finite Difference Approximation of the Advective Term in the Heat or Solute Transport Equations Analytical Solution for Darcy Flow in a Bounded Fracture-Matrix Domain Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow–Porous Medium System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1