{"title":"Bifurcations and Exact Solutions of a Cantilever Beam Vibration Model Without Damping and Forced Terms","authors":"Jinsen Zhuang, Guanrong Chen, Jibin Li","doi":"10.1142/s0218127424500391","DOIUrl":null,"url":null,"abstract":"<p>For the cantilever beam vibration model without damping and forced terms, the corresponding differential system is a planar dynamical system with some singular straight lines. In this paper, by using the techniques from dynamical systems and singular traveling wave theory developed by [Li & Chen, 2007] to analyze its corresponding differential system, the bifurcations and the dynamical behaviors of the corresponding phase portraits are identified and analyzed. Under different parameter conditions, exact homoclinic and heteroclinic solutions, periodic solutions, compacton solutions, as well as peakons and periodic peakons, are all found explicitly.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500391","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
For the cantilever beam vibration model without damping and forced terms, the corresponding differential system is a planar dynamical system with some singular straight lines. In this paper, by using the techniques from dynamical systems and singular traveling wave theory developed by [Li & Chen, 2007] to analyze its corresponding differential system, the bifurcations and the dynamical behaviors of the corresponding phase portraits are identified and analyzed. Under different parameter conditions, exact homoclinic and heteroclinic solutions, periodic solutions, compacton solutions, as well as peakons and periodic peakons, are all found explicitly.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.