A Case for In-Memory Random Scatter-Gather for Fast Graph Processing

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2024-03-13 DOI:10.1109/LCA.2024.3376680
Changmin Shin;Taehee Kwon;Jaeyong Song;Jae Hyung Ju;Frank Liu;Yeonkyu Choi;Jinho Lee
{"title":"A Case for In-Memory Random Scatter-Gather for Fast Graph Processing","authors":"Changmin Shin;Taehee Kwon;Jaeyong Song;Jae Hyung Ju;Frank Liu;Yeonkyu Choi;Jinho Lee","doi":"10.1109/LCA.2024.3376680","DOIUrl":null,"url":null,"abstract":"Because of the widely recognized memory wall issue, modern DRAMs are increasingly being assigned innovative functionalities beyond the basic read and write operations. Often referred to as “function-in-memory”, these techniques are crafted to leverage the abundant internal bandwidth available within the DRAM. However, these techniques face several challenges, including requiring large areas for arithmetic units and the necessity of splitting a single word into multiple pieces. These challenges severely limit the practical application of these function-in-memory techniques. In this paper, we present Piccolo, an efficient design of random scatter-gather memory. Our method achieves significant improvements with minimal overhead. By demonstrating our technique on a graph processing accelerator, we show that Piccolo and the proposed accelerator achieves \n<inline-formula><tex-math>$1.2-3.1 \\times$</tex-math></inline-formula>\n speedup compared to the prior art.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"73-77"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10472040/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the widely recognized memory wall issue, modern DRAMs are increasingly being assigned innovative functionalities beyond the basic read and write operations. Often referred to as “function-in-memory”, these techniques are crafted to leverage the abundant internal bandwidth available within the DRAM. However, these techniques face several challenges, including requiring large areas for arithmetic units and the necessity of splitting a single word into multiple pieces. These challenges severely limit the practical application of these function-in-memory techniques. In this paper, we present Piccolo, an efficient design of random scatter-gather memory. Our method achieves significant improvements with minimal overhead. By demonstrating our technique on a graph processing accelerator, we show that Piccolo and the proposed accelerator achieves $1.2-3.1 \times$ speedup compared to the prior art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速图形处理的内存随机散点收集案例
由于公认的内存墙问题,现代 DRAM 越来越多地被赋予基本读写操作之外的创新功能。这些技术通常被称为 "内存中的功能",旨在充分利用 DRAM 内部丰富的带宽。然而,这些技术面临着一些挑战,包括需要大面积的算术单元,以及必须将单个字分割成多个片段。这些挑战严重限制了这些内存中函数技术的实际应用。在本文中,我们介绍了一种高效的随机散点收集存储器设计 Piccolo。我们的方法以最小的开销实现了显著的改进。通过在图形处理加速器上演示我们的技术,我们发现与现有技术相比,Piccolo 和提议的加速器的速度提高了 1.2-3.1 \times$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
A Flexible Hybrid Interconnection Design for High-Performance and Energy-Efficient Chiplet-Based Systems Efficient Implementation of Knuth Yao Sampler on Reconfigurable Hardware SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training Octopus: A Cycle-Accurate Cache System Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1