{"title":"Newtonian laws of motion and conservation principles","authors":"James M Hill","doi":"10.1177/10812865241227972","DOIUrl":null,"url":null,"abstract":"Newton’s laws of motion and Newtonian conservation principles such as those for energy and momentum involve the assumption that the vanishing of a certain total time derivative, on integration, yields a fixed constant value as an immediate consequence. While this may ultimately be the case for additional reasons, it is possible to have a properly vanishing total time derivative and yet the individual partial derivates are non-zero. Here, for a particular problem and based only on the requirement that the total time derivative of the quantity vanishes, we investigate the particular mechanism leading to a conventional conservation principle. For the energy and angular momentum totals for planar steady orbiting motion, the partial differential conditions may be formally solved to obtain the general solutions. We determine the general structure for variable energy and angular momentum for which the total time derivatives vanish, and from which it is apparent that the standard expression for constant energy and angular momentum is recovered.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"19 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241227972","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Newton’s laws of motion and Newtonian conservation principles such as those for energy and momentum involve the assumption that the vanishing of a certain total time derivative, on integration, yields a fixed constant value as an immediate consequence. While this may ultimately be the case for additional reasons, it is possible to have a properly vanishing total time derivative and yet the individual partial derivates are non-zero. Here, for a particular problem and based only on the requirement that the total time derivative of the quantity vanishes, we investigate the particular mechanism leading to a conventional conservation principle. For the energy and angular momentum totals for planar steady orbiting motion, the partial differential conditions may be formally solved to obtain the general solutions. We determine the general structure for variable energy and angular momentum for which the total time derivatives vanish, and from which it is apparent that the standard expression for constant energy and angular momentum is recovered.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).