An updated review on how biochar may possess potential in soil ARGs control on aspects of source, fate and elimination

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Biochar Pub Date : 2024-03-13 DOI:10.1007/s42773-024-00319-0
Haibo Li, Ying Lin, Xiaofei Qin, Liuyu Song, Fuhao Fan, Yang Liu, Sihan Li
{"title":"An updated review on how biochar may possess potential in soil ARGs control on aspects of source, fate and elimination","authors":"Haibo Li, Ying Lin, Xiaofei Qin, Liuyu Song, Fuhao Fan, Yang Liu, Sihan Li","doi":"10.1007/s42773-024-00319-0","DOIUrl":null,"url":null,"abstract":"<p>The global environmental issue of soil contamination with antibiotic-resistance genes has garnered increased attention in recent years due to its impact on ecosystems and human health. Despite this recognition, researchers face challenges in comprehensively understanding the mechanisms underlying the production and dissemination of soil resistance genes, particularly in relation to their implications for human health. This lack of understanding poses a barrier to the development of effective and precise control strategies. Biochar, a sustainable material, exhibits favorable adsorption properties characterized by its large pores and specific surface area. Therefore, we propose to explore the potential application of biochar addition in soil resistance gene management. In order to establish a solid research foundation in this area, in this paper we review the mechanisms underlying the generation and accumulation of soil resistance genes over the last decade, along with their transmission pathways and interfacial interactions. Biochar may help repair soil resistance genes by affecting factors like antibiotic levels, environmental conditions, enzymatic activity, and gene migration mechanisms, opening up new research possibilities.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"21 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00319-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The global environmental issue of soil contamination with antibiotic-resistance genes has garnered increased attention in recent years due to its impact on ecosystems and human health. Despite this recognition, researchers face challenges in comprehensively understanding the mechanisms underlying the production and dissemination of soil resistance genes, particularly in relation to their implications for human health. This lack of understanding poses a barrier to the development of effective and precise control strategies. Biochar, a sustainable material, exhibits favorable adsorption properties characterized by its large pores and specific surface area. Therefore, we propose to explore the potential application of biochar addition in soil resistance gene management. In order to establish a solid research foundation in this area, in this paper we review the mechanisms underlying the generation and accumulation of soil resistance genes over the last decade, along with their transmission pathways and interfacial interactions. Biochar may help repair soil resistance genes by affecting factors like antibiotic levels, environmental conditions, enzymatic activity, and gene migration mechanisms, opening up new research possibilities.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于生物炭如何在土壤中 ARGs 的来源、转归和消除方面具有控制潜力的最新综述
近年来,土壤抗生素耐药基因污染这一全球环境问题因其对生态系统和人类健康的影响而日益受到关注。尽管人们认识到了这一点,但研究人员在全面了解土壤抗性基因的产生和传播机制,特别是其对人类健康的影响方面仍面临挑战。这种认识上的不足阻碍了有效、精确控制策略的制定。生物炭是一种可持续材料,具有良好的吸附特性,其特点是孔隙大、比表面积大。因此,我们建议探索生物炭在土壤抗性基因管理中的潜在应用。为了在这一领域奠定坚实的研究基础,我们在本文中回顾了过去十年中土壤抗性基因的产生和积累机制,以及它们的传播途径和界面相互作用。生物炭可以通过影响抗生素水平、环境条件、酶活性和基因迁移机制等因素,帮助修复土壤抗性基因,为研究提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
期刊最新文献
Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023 Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: a case study for removing atrazine from water Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water Plant performance and soil–plant carbon relationship response to different biochar types A critical review of hydrochar based photocatalysts by hydrothermal carbonization: synthesis, mechanisms, and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1