{"title":"Audio-Visual Contrastive Pre-train for Face Forgery Detection","authors":"Hanqing Zhao, Wenbo Zhou, Dongdong Chen, Weiming Zhang, Ying Guo, Zhen Cheng, Pengfei Yan, Nenghai Yu","doi":"10.1145/3651311","DOIUrl":null,"url":null,"abstract":"<p>The highly realistic avatar in the metaverse may lead to severe leakage of facial privacy. Malicious users can more easily obtain the 3D structure of faces, thus using Deepfake technology to create counterfeit videos with higher realism. To automatically discern facial videos forged with the advancing generation techniques, deepfake detectors need to achieve stronger generalization abilities. Inspired by transfer learning, neural networks pre-trained on other large-scale face-related tasks would provide fundamental features for deepfake detection. We propose a video-level deepfake detection method based on a temporal transformer with a self-supervised audio-visual contrastive learning approach for pre-training the deepfake detector. The proposed method learns motion representations in the mouth region by encouraging the paired video and audio representations to be close while unpaired ones to be diverse. The deepfake detector adopts the pre-trained weights and partially fine-tunes on deepfake datasets. Extensive experiments show that our self-supervised pre-training method can effectively improve the accuracy and robustness of our deepfake detection model without extra human efforts. Compared with existing deepfake detection methods, our proposed method achieves better generalization ability in cross-dataset evaluations.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651311","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The highly realistic avatar in the metaverse may lead to severe leakage of facial privacy. Malicious users can more easily obtain the 3D structure of faces, thus using Deepfake technology to create counterfeit videos with higher realism. To automatically discern facial videos forged with the advancing generation techniques, deepfake detectors need to achieve stronger generalization abilities. Inspired by transfer learning, neural networks pre-trained on other large-scale face-related tasks would provide fundamental features for deepfake detection. We propose a video-level deepfake detection method based on a temporal transformer with a self-supervised audio-visual contrastive learning approach for pre-training the deepfake detector. The proposed method learns motion representations in the mouth region by encouraging the paired video and audio representations to be close while unpaired ones to be diverse. The deepfake detector adopts the pre-trained weights and partially fine-tunes on deepfake datasets. Extensive experiments show that our self-supervised pre-training method can effectively improve the accuracy and robustness of our deepfake detection model without extra human efforts. Compared with existing deepfake detection methods, our proposed method achieves better generalization ability in cross-dataset evaluations.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.