Jinwei Wang, Haihua Wang, Jiawei Zhang, Hao Wu, Xiangyang Luo, Bin Ma
{"title":"Invisible Adversarial Watermarking: A Novel Security Mechanism for Enhancing Copyright Protection","authors":"Jinwei Wang, Haihua Wang, Jiawei Zhang, Hao Wu, Xiangyang Luo, Bin Ma","doi":"10.1145/3652608","DOIUrl":null,"url":null,"abstract":"<p>Invisible watermarking can be used as an important tool for copyright certification in the Metaverse. However, with the advent of deep learning, Deep Neural Networks (DNNs) have posed new threats to this technique. For example, artificially trained DNNs can perform unauthorized content analysis and achieve illegal access to protected images. Furthermore, some specially crafted DNNs may even erase invisible watermarks embedded within the protected images, which eventually leads to the collapse of this protection and certification mechanism. To address these issues, inspired by the adversarial attack, we introduce Invisible Adversarial Watermarking (IAW), a novel security mechanism to enhance the copyright protection efficacy of watermarks. Specifically, we design an Adversarial Watermarking Fusion Model (AWFM) to efficiently generate Invisible Adversarial Watermark Images (IAWIs). By modeling the embedding of watermarks and adversarial perturbations as a unified task, the generated IAWIs can effectively defend against unauthorized identification, access, and erase via DNNs, and identify the ownership by extracting the embedded watermark. Experimental results show that the proposed IAW presents superior extraction accuracy, attack ability, and robustness on different DNNs, and the protected images maintain good visual quality, which ensures its effectiveness as an image protection mechanism.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"36 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652608","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Invisible watermarking can be used as an important tool for copyright certification in the Metaverse. However, with the advent of deep learning, Deep Neural Networks (DNNs) have posed new threats to this technique. For example, artificially trained DNNs can perform unauthorized content analysis and achieve illegal access to protected images. Furthermore, some specially crafted DNNs may even erase invisible watermarks embedded within the protected images, which eventually leads to the collapse of this protection and certification mechanism. To address these issues, inspired by the adversarial attack, we introduce Invisible Adversarial Watermarking (IAW), a novel security mechanism to enhance the copyright protection efficacy of watermarks. Specifically, we design an Adversarial Watermarking Fusion Model (AWFM) to efficiently generate Invisible Adversarial Watermark Images (IAWIs). By modeling the embedding of watermarks and adversarial perturbations as a unified task, the generated IAWIs can effectively defend against unauthorized identification, access, and erase via DNNs, and identify the ownership by extracting the embedded watermark. Experimental results show that the proposed IAW presents superior extraction accuracy, attack ability, and robustness on different DNNs, and the protected images maintain good visual quality, which ensures its effectiveness as an image protection mechanism.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.