Faezeh Ahrari, Mitra Pourmohammadi Lish, Maryam Yousefi, Mehdi Mohammadi
{"title":"Improving the stability of an unstable lipase by applying different immobilization strategies for the selective hydrolysis of fish oil","authors":"Faezeh Ahrari, Mitra Pourmohammadi Lish, Maryam Yousefi, Mehdi Mohammadi","doi":"10.1002/aocs.12833","DOIUrl":null,"url":null,"abstract":"<p><i>Rhizopus oryzae</i> lipase (ROL) is known to present high selectivity in chemical reactions. However, the poor stability of ROL effectively limits its industrial applications. In this study, several immobilization protocols, such as hydrophobic adsorption, covalent immobilization, multi-point covalent attachment, ionic adsorption/cross-linking, and ionic interaction, were applied to improve the stability of ROL. Heterogeneous modification of aspartic and glutamic acid residues on the surface of ROL was carried out by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to introduce new amine groups with lower pKb. The highest immobilization yield of 89% was achieved for octyl-agarose, producing specific activity of 45 U/mg, which is 15 folds higher than the specific activity of the soluble enzyme. Improved stability of ROL was observed, in particular for those derivatives obtained by multi-point covalent attachment of ROL on glyoxyl-agarose (Gx-ROL) and aminated ROL on glyoxyl-agarose (Gx-NH<sub>2</sub>-ROL) by retaining 28%–36% of their initial activities after 24 h incubation at 60°C. Immobilization also altered the co-solvent stability profile of the immobilized derivatives producing biocatalysts with varied co-solvent stabilities. Furthermore, utilization of the immobilized preparations in fish oil hydrolysis revealed the selective release of cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest EPA/DHA selectivity of 33 was observed for the hydrophobically immobilized ROL on octyl-sepharose.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12833","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Rhizopus oryzae lipase (ROL) is known to present high selectivity in chemical reactions. However, the poor stability of ROL effectively limits its industrial applications. In this study, several immobilization protocols, such as hydrophobic adsorption, covalent immobilization, multi-point covalent attachment, ionic adsorption/cross-linking, and ionic interaction, were applied to improve the stability of ROL. Heterogeneous modification of aspartic and glutamic acid residues on the surface of ROL was carried out by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to introduce new amine groups with lower pKb. The highest immobilization yield of 89% was achieved for octyl-agarose, producing specific activity of 45 U/mg, which is 15 folds higher than the specific activity of the soluble enzyme. Improved stability of ROL was observed, in particular for those derivatives obtained by multi-point covalent attachment of ROL on glyoxyl-agarose (Gx-ROL) and aminated ROL on glyoxyl-agarose (Gx-NH2-ROL) by retaining 28%–36% of their initial activities after 24 h incubation at 60°C. Immobilization also altered the co-solvent stability profile of the immobilized derivatives producing biocatalysts with varied co-solvent stabilities. Furthermore, utilization of the immobilized preparations in fish oil hydrolysis revealed the selective release of cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest EPA/DHA selectivity of 33 was observed for the hydrophobically immobilized ROL on octyl-sepharose.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.