{"title":"Ubiquitin ligase subunit FBXO9 inhibits V-ATPase assembly and impedes lung cancer metastasis","authors":"Liang Liu, Xiaodong Chen, Leilei Wu, Kaizong Huang, Zhenyi Wang, Yaolin Zheng, Cheng Zheng, Zhenshan Zhang, Jiayan Chen, Jiaming Wei, Song Chen, Weilin Jin, Jinfei Chen, Dongping Wei, Yaping Xu","doi":"10.1186/s40164-024-00497-4","DOIUrl":null,"url":null,"abstract":"The evolutionarily conserved protein FBXO9 acts as a substrate receptor for the SKP1-cullin-1-RBX1 ubiquitin ligase and is implicated in cancer, exhibiting either tumor-suppressive or oncogenic effects depending on the specific tumor type. However, their role in lung cancer metastasis remains unclear. Lentiviral vectors carrying miRNA-based shRNA sequences for gene-specific knockdown were generated, and Lenti-CRISPR-Cas9 vectors containing gene-specific sgRNA sequences were designed. Gene overexpression was achieved using doxycycline-inducible lentiviral constructs, while gene knockdown or knockout cells were generated using shRNA and CRISPR-Cas9, respectively. Functional assays included migration, clonogenic survival assays, tumor sphere assays, and protein interaction studies using mass spectrometry, immunoprecipitation, and immunoblot analysis. This study identified FBXO9 as a crucial regulator that suppresses lung cancer cell migration, tumor sphere growth and restricts metastasis. We showed that FBXO9 facilitates the ubiquitination of the catalytic subunit A (ATP6V1A) of the Vacuolar-type H+-ATPase (V-ATPase), resulting in its interaction with the cytoplasmic chaperone HSPA8 and subsequent sequestration within the cytoplasm. This process hinders the assembly of functional V-ATPase, resulting in reduced vesicular acidification. In contrast, depletion of FBXO9 reduced ATP6V1A ubiquitination, resulting in increased V-ATPase assembly and vesicular acidification, thus promoting pro-metastatic Wnt signaling and metastasis of lung cancer cells. Furthermore, we demonstrated the effectiveness of inhibitors targeting V-ATPase in inhibiting lung cancer metastasis in a mouse model. Finally, we established a correlation between lower FBXO9 levels and poorer survival outcomes in patients with lung cancer. These findings collectively elucidate the critical role of FBXO9 in regulating V-ATPase assembly and provide a molecular basis for FBXO9’s function in inhibiting lung cancer metastasis. This highlights the potential therapeutic opportunities of FBXO9 supplementation.","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"16 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00497-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The evolutionarily conserved protein FBXO9 acts as a substrate receptor for the SKP1-cullin-1-RBX1 ubiquitin ligase and is implicated in cancer, exhibiting either tumor-suppressive or oncogenic effects depending on the specific tumor type. However, their role in lung cancer metastasis remains unclear. Lentiviral vectors carrying miRNA-based shRNA sequences for gene-specific knockdown were generated, and Lenti-CRISPR-Cas9 vectors containing gene-specific sgRNA sequences were designed. Gene overexpression was achieved using doxycycline-inducible lentiviral constructs, while gene knockdown or knockout cells were generated using shRNA and CRISPR-Cas9, respectively. Functional assays included migration, clonogenic survival assays, tumor sphere assays, and protein interaction studies using mass spectrometry, immunoprecipitation, and immunoblot analysis. This study identified FBXO9 as a crucial regulator that suppresses lung cancer cell migration, tumor sphere growth and restricts metastasis. We showed that FBXO9 facilitates the ubiquitination of the catalytic subunit A (ATP6V1A) of the Vacuolar-type H+-ATPase (V-ATPase), resulting in its interaction with the cytoplasmic chaperone HSPA8 and subsequent sequestration within the cytoplasm. This process hinders the assembly of functional V-ATPase, resulting in reduced vesicular acidification. In contrast, depletion of FBXO9 reduced ATP6V1A ubiquitination, resulting in increased V-ATPase assembly and vesicular acidification, thus promoting pro-metastatic Wnt signaling and metastasis of lung cancer cells. Furthermore, we demonstrated the effectiveness of inhibitors targeting V-ATPase in inhibiting lung cancer metastasis in a mouse model. Finally, we established a correlation between lower FBXO9 levels and poorer survival outcomes in patients with lung cancer. These findings collectively elucidate the critical role of FBXO9 in regulating V-ATPase assembly and provide a molecular basis for FBXO9’s function in inhibiting lung cancer metastasis. This highlights the potential therapeutic opportunities of FBXO9 supplementation.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.