Yu Wang , Bin Zhou , Jingjie Guo , Tao Liu , Yu Yang , Bing Li , Jiaojiao Yang , Yue Peng , Jianjun Chen , Wenzhe Si , Junhua Li
{"title":"Nanoconfinement effects of mesoporous CuMn2O4 spinel for constructing efficient Hg0 removal catalysts","authors":"Yu Wang , Bin Zhou , Jingjie Guo , Tao Liu , Yu Yang , Bing Li , Jiaojiao Yang , Yue Peng , Jianjun Chen , Wenzhe Si , Junhua Li","doi":"10.1016/j.catcom.2024.106899","DOIUrl":null,"url":null,"abstract":"<div><p>Developing high-performance mercury removal catalysts is essential for addressing atmospheric mercury pollution. Notably, conventional mineral adsorbents are ineffective for high-temperature flue gases (>300 °C). In this study, confinement catalysis was utilized to modify CuMn<sub>2</sub>O<sub>4</sub>. Under the chlorine-free catalytic condition, the temperature window of T<sub>95</sub> was widened by 150 °C (for 50–400 °C) toward high-temperature. Mechanistic studies suggest that nanoconfinement effects significantly improve the catalytic performance. Molecular oxygen adsorption and activation capacity were dramatically enhanced, as demonstrated by NAP-XPS. The plentiful grain boundaries effectively adjust the defect species and electronic structure of the catalysts in favor of Hg<sup>0</sup> catalysis, whereas the porous structure improves the reactant adsorption properties.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106899"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000591/pdfft?md5=e3a94f1c7a3a7b115242da8979b65765&pid=1-s2.0-S1566736724000591-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000591","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing high-performance mercury removal catalysts is essential for addressing atmospheric mercury pollution. Notably, conventional mineral adsorbents are ineffective for high-temperature flue gases (>300 °C). In this study, confinement catalysis was utilized to modify CuMn2O4. Under the chlorine-free catalytic condition, the temperature window of T95 was widened by 150 °C (for 50–400 °C) toward high-temperature. Mechanistic studies suggest that nanoconfinement effects significantly improve the catalytic performance. Molecular oxygen adsorption and activation capacity were dramatically enhanced, as demonstrated by NAP-XPS. The plentiful grain boundaries effectively adjust the defect species and electronic structure of the catalysts in favor of Hg0 catalysis, whereas the porous structure improves the reactant adsorption properties.
期刊介绍:
Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.