Observation of cavitation dynamics in viscous deep eutectic solvents during power ultrasound sonication†

IF 3.4 3区 化学 Q2 Chemistry Faraday Discussions Pub Date : 2024-03-14 DOI:10.1039/D4FD00031E
Ben Jacobson, Shida Li, Paul Daly, Christopher E. Elgar, Andrew P. Abbott, Andrew Feeney and Paul Prentice
{"title":"Observation of cavitation dynamics in viscous deep eutectic solvents during power ultrasound sonication†","authors":"Ben Jacobson, Shida Li, Paul Daly, Christopher E. Elgar, Andrew P. Abbott, Andrew Feeney and Paul Prentice","doi":"10.1039/D4FD00031E","DOIUrl":null,"url":null,"abstract":"<p >Deep eutectic solvents (DESs) are a class of ionic liquid with emerging applications in ionometallurgy. The characteristic high viscosity of DESs, however, limit mass transport and result in slow dissolution kinetics. Through targeted application of high-power ultrasound, ionometallurgical processing time can be significantly accelerated. This acceleration is primarily mediated by the cavitation generated in the liquid surrounding the ultrasound source. In this work, we characterise the development of cavitation structure in three DESs of increasing viscosity, and water, <em>via</em> high-speed imaging and parallel acoustic detection. The intensity of the cavitation is characterised in each liquid as a function of input power of a commercially available ultrasonic horn across more than twenty input powers, by monitoring the bubble collapse shockwaves generated by intense, inertially collapsing bubbles. Through analysis of the acoustic emissions and bubble structure dynamics in each liquid, optimal driving powers are identified where cavitation is most effective. In each of the DESs, driving the ultrasonic horn at lower input powers (25%) was associated with greater cavitation performance than at double the driving power (50%).</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 458-477"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00031e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/fd/d4fd00031e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Deep eutectic solvents (DESs) are a class of ionic liquid with emerging applications in ionometallurgy. The characteristic high viscosity of DESs, however, limit mass transport and result in slow dissolution kinetics. Through targeted application of high-power ultrasound, ionometallurgical processing time can be significantly accelerated. This acceleration is primarily mediated by the cavitation generated in the liquid surrounding the ultrasound source. In this work, we characterise the development of cavitation structure in three DESs of increasing viscosity, and water, via high-speed imaging and parallel acoustic detection. The intensity of the cavitation is characterised in each liquid as a function of input power of a commercially available ultrasonic horn across more than twenty input powers, by monitoring the bubble collapse shockwaves generated by intense, inertially collapsing bubbles. Through analysis of the acoustic emissions and bubble structure dynamics in each liquid, optimal driving powers are identified where cavitation is most effective. In each of the DESs, driving the ultrasonic horn at lower input powers (25%) was associated with greater cavitation performance than at double the driving power (50%).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在功率超声超声过程中观察粘性深共晶溶剂中的空化动力学
深共晶溶剂(DES)是一类离子液体,在离子冶金方面的应用正在不断涌现。然而,DESs特有的高粘度限制了质量传输,导致溶解动力学缓慢。通过有针对性地应用高功率超声波,可以显著加快离子冶金处理时间。这种加速主要是由超声源周围液体中产生的空化作用促成的。在这项工作中,我们通过高速成像和平行声学检测,描述了三种粘度不断增加的 DES 和水的空化结构的发展特征。通过监测由强烈的惯性塌陷气泡产生的气泡塌陷冲击波,对每种液体中的空化强度进行了表征,该强度是市售超声波喇叭二十多种输入功率的函数。通过分析每种液体中的声发射和气泡结构动态,确定了空化最有效的最佳驱动功率。在每种 DES 中,以较低输入功率(25%)驱动超声波喇叭比以双倍驱动功率(50%)驱动超声波喇叭具有更高的空化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions CHEMISTRY, PHYSICAL-
CiteScore
4.90
自引率
0.00%
发文量
259
审稿时长
2.8 months
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Back cover List of participants Poster list Correction: Challenges with relativistic GW calculations in solids and molecules List of participants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1