Ridge estimation of covariance matrix from data in two classes

Pub Date : 2024-02-22 DOI:10.21136/AM.2024.0157-23
Yi Zhou, Bin Zhang
{"title":"Ridge estimation of covariance matrix from data in two classes","authors":"Yi Zhou,&nbsp;Bin Zhang","doi":"10.21136/AM.2024.0157-23","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the problem of estimating a covariance matrix from the data in two classes: (1) good data with the covariance matrix of interest and (2) contamination coming from a Gaussian distribution with a different covariance matrix. The ridge penalty is introduced to address the problem of high-dimensional challenges in estimating the covariance matrix from the two-class data model. A ridge estimator of the covariance matrix has a uniform expression and keeps positive-definite, whether the data size is larger or smaller than the data dimension. Furthermore, the ridge parameter is tuned through a cross-validation procedure. Lastly, the proposed ridge estimator is verified with better performance than the existing estimator from the data in two classes and the traditional ridge estimator only from the good data.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2024.0157-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the problem of estimating a covariance matrix from the data in two classes: (1) good data with the covariance matrix of interest and (2) contamination coming from a Gaussian distribution with a different covariance matrix. The ridge penalty is introduced to address the problem of high-dimensional challenges in estimating the covariance matrix from the two-class data model. A ridge estimator of the covariance matrix has a uniform expression and keeps positive-definite, whether the data size is larger or smaller than the data dimension. Furthermore, the ridge parameter is tuned through a cross-validation procedure. Lastly, the proposed ridge estimator is verified with better performance than the existing estimator from the data in two classes and the traditional ridge estimator only from the good data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
从两类数据中对协方差矩阵进行岭式估计
摘要 本文论述了从两类数据中估计协方差矩阵的问题:(1) 具有相关协方差矩阵的良好数据;(2) 来自具有不同协方差矩阵的高斯分布的污染。为了解决从两类数据模型中估计协方差矩阵所面临的高维挑战,我们引入了脊惩罚。无论数据大小比数据维度大还是小,协方差矩阵的脊估计器都有统一的表达式,并保持正有限性。此外,脊参数还可以通过交叉验证程序进行调整。最后,验证了所提出的脊估计器在两类数据中的性能优于现有估计器,以及仅在良好数据中的传统脊估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1