{"title":"A 3D feature-based approach for mapping scaling effects on stone monuments","authors":"Imanol Munoz-Pandiella, Xavier Pueyo, Carles Bosch","doi":"10.1145/3651988","DOIUrl":null,"url":null,"abstract":"<p>Weathering effects caused by physical, chemical, or biological processes result in visible damages that alter the appearance of stones’ surfaces. Consequently, weathered stone monuments can offer a distorted perception of the artworks to the point of making their interpretation misleading. Being able to detect and monitor decay is crucial for restorers and curators to perform important tasks such as identifying missing parts, assessing the preservation state, or evaluating curating strategies. Decay mapping, the process of identifying weathered zones of artworks, is essential for preservation and research projects. This is usually carried out by marking the affected parts of the monument on a 2D drawing or picture of it. One of the main problems of this methodology is that it is manual work based only on experts’ observations. This makes the process slow and often results in disparities between the mappings of the same monument made by different experts. In this paper, we focus on the weathering effect known as “scaling”, following the ICOMOS ISCS definition. We present a novel technique for detecting, segmenting, and classifying these effects on stone monuments. Our method is user-friendly, requiring minimal user input. By analyzing 3D reconstructed data considering geometry and appearance, the method identifies scaling features and segments weathered regions, classifying them by scaling subtype. It shows improvements over previous approaches and is well-received by experts, representing a significant step towards objective stone decay mapping.</p>","PeriodicalId":54310,"journal":{"name":"ACM Journal on Computing and Cultural Heritage","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Computing and Cultural Heritage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651988","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Weathering effects caused by physical, chemical, or biological processes result in visible damages that alter the appearance of stones’ surfaces. Consequently, weathered stone monuments can offer a distorted perception of the artworks to the point of making their interpretation misleading. Being able to detect and monitor decay is crucial for restorers and curators to perform important tasks such as identifying missing parts, assessing the preservation state, or evaluating curating strategies. Decay mapping, the process of identifying weathered zones of artworks, is essential for preservation and research projects. This is usually carried out by marking the affected parts of the monument on a 2D drawing or picture of it. One of the main problems of this methodology is that it is manual work based only on experts’ observations. This makes the process slow and often results in disparities between the mappings of the same monument made by different experts. In this paper, we focus on the weathering effect known as “scaling”, following the ICOMOS ISCS definition. We present a novel technique for detecting, segmenting, and classifying these effects on stone monuments. Our method is user-friendly, requiring minimal user input. By analyzing 3D reconstructed data considering geometry and appearance, the method identifies scaling features and segments weathered regions, classifying them by scaling subtype. It shows improvements over previous approaches and is well-received by experts, representing a significant step towards objective stone decay mapping.
期刊介绍:
ACM Journal on Computing and Cultural Heritage (JOCCH) publishes papers of significant and lasting value in all areas relating to the use of information and communication technologies (ICT) in support of Cultural Heritage. The journal encourages the submission of manuscripts that demonstrate innovative use of technology for the discovery, analysis, interpretation and presentation of cultural material, as well as manuscripts that illustrate applications in the Cultural Heritage sector that challenge the computational technologies and suggest new research opportunities in computer science.