Himani Dhanze, Balbir B. Singh, Michael Walsh, M. Suman Kumar, Amit Kumar, Kiran N. Bhilegaonkar, Victoria J. Brookes
{"title":"Spatio-temporal epidemiology of Japanese encephalitis virus infection in pig populations of eastern Uttar Pradesh, India, 2013–2022","authors":"Himani Dhanze, Balbir B. Singh, Michael Walsh, M. Suman Kumar, Amit Kumar, Kiran N. Bhilegaonkar, Victoria J. Brookes","doi":"10.1111/zph.13123","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Japanese encephalitis (JE) is endemic in India. Although pigs are considered important hosts and sentinels for JE outbreaks in people, limited information is available on JE virus (JEV) surveillance in pigs.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>We investigated the spatio-temporal distribution of JEV seroprevalence and its association with climate variables in 4451 samples from pigs in 10 districts of eastern Uttar Pradesh, India, over 10 years from 2013 to 2022. The mean seroprevalence of IgG (2013–2022) and IgM (2017–2022) was 14% (95% CI 12.8–15.2) and 10.98% (95% CI 9.8–12.2), respectively. Throughout the region, higher seroprevalence from 2013 to 2017 was observed and was highly variable with no predictable spatio-temporal pattern between districts. Seroprevalence of up to 60.8% in Sant Kabir Nagar in 2016 and 69.5% in Gorakhpur district in 2017 for IgG and IgM was observed, respectively. IgG seroprevalence did not increase with age. Monthly time-series decomposition of IgG and IgM seroprevalence demonstrated annual cyclicity (3–4 peaks) with seasonality (higher, broader peaks in the summer and monsoon periods). However, most variance was due to the overall trend and the random components of the time series. Autoregressive time-series modelling of pigs sampled from Gorakhpur was insufficiently predictive for forecasting; however, an inverse association between humidity (but not rainfall or temperature) was observed.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Detection patterns confirm seasonal epidemic periods within year-round endemicity in pigs in eastern Uttar Pradesh. Lack of increasing age-associated seroprevalence indicates that JEV might not be immunizing in pigs which needs further investigation because models that inform public health interventions for JEV could be inaccurate if assuming long-term immunity in pigs. Although pigs are considered sentinels for human outbreaks, sufficient timeliness using sero-surveillance in pigs to inform public health interventions to prevent JEV in people will require more nuanced modelling than seroprevalence and broad climate variables alone.</p>\n </section>\n </div>","PeriodicalId":24025,"journal":{"name":"Zoonoses and Public Health","volume":"71 4","pages":"429-441"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/zph.13123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoonoses and Public Health","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/zph.13123","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Japanese encephalitis (JE) is endemic in India. Although pigs are considered important hosts and sentinels for JE outbreaks in people, limited information is available on JE virus (JEV) surveillance in pigs.
Methods and Results
We investigated the spatio-temporal distribution of JEV seroprevalence and its association with climate variables in 4451 samples from pigs in 10 districts of eastern Uttar Pradesh, India, over 10 years from 2013 to 2022. The mean seroprevalence of IgG (2013–2022) and IgM (2017–2022) was 14% (95% CI 12.8–15.2) and 10.98% (95% CI 9.8–12.2), respectively. Throughout the region, higher seroprevalence from 2013 to 2017 was observed and was highly variable with no predictable spatio-temporal pattern between districts. Seroprevalence of up to 60.8% in Sant Kabir Nagar in 2016 and 69.5% in Gorakhpur district in 2017 for IgG and IgM was observed, respectively. IgG seroprevalence did not increase with age. Monthly time-series decomposition of IgG and IgM seroprevalence demonstrated annual cyclicity (3–4 peaks) with seasonality (higher, broader peaks in the summer and monsoon periods). However, most variance was due to the overall trend and the random components of the time series. Autoregressive time-series modelling of pigs sampled from Gorakhpur was insufficiently predictive for forecasting; however, an inverse association between humidity (but not rainfall or temperature) was observed.
Conclusions
Detection patterns confirm seasonal epidemic periods within year-round endemicity in pigs in eastern Uttar Pradesh. Lack of increasing age-associated seroprevalence indicates that JEV might not be immunizing in pigs which needs further investigation because models that inform public health interventions for JEV could be inaccurate if assuming long-term immunity in pigs. Although pigs are considered sentinels for human outbreaks, sufficient timeliness using sero-surveillance in pigs to inform public health interventions to prevent JEV in people will require more nuanced modelling than seroprevalence and broad climate variables alone.
期刊介绍:
Zoonoses and Public Health brings together veterinary and human health researchers and policy-makers by providing a venue for publishing integrated and global approaches to zoonoses and public health. The Editors will consider papers that focus on timely collaborative and multi-disciplinary research in zoonoses and public health. This journal provides rapid publication of original papers, reviews, and potential discussion papers embracing this collaborative spirit. Papers should advance the scientific knowledge of the sources, transmission, prevention and control of zoonoses and be authored by scientists with expertise in areas such as microbiology, virology, parasitology and epidemiology. Articles that incorporate recent data into new methods, applications, or approaches (e.g. statistical modeling) which enhance public health are strongly encouraged.