Towards revolutionizing precision healthcare: A systematic literature review of artificial intelligence methods in precision medicine

Wafae Abbaoui , Sara Retal , Brahim El Bhiri , Nassim Kharmoum , Soumia Ziti
{"title":"Towards revolutionizing precision healthcare: A systematic literature review of artificial intelligence methods in precision medicine","authors":"Wafae Abbaoui ,&nbsp;Sara Retal ,&nbsp;Brahim El Bhiri ,&nbsp;Nassim Kharmoum ,&nbsp;Soumia Ziti","doi":"10.1016/j.imu.2024.101475","DOIUrl":null,"url":null,"abstract":"<div><p>In the realm of medicine, artificial intelligence (AI) has emerged as a transformative force, harnessing the power to convert raw data into meaningful insights. Rather than supplanting the discernment of physicians, AI serves as an unprecedented enabler, equipping them with unimaginable tools. Its far-reaching applications encompass drug discovery, disease diagnosis, prognosis, treatment optimization, and outcome prediction. This technological revolution owes much to the prowess of machine learning algorithms, which adeptly process multifaceted data. Consequently, AI is poised to become an integral pillar of digital health systems, shaping and bolstering the realm of personalized medicine. The current landscape is abuzz with AI’s exponential growth, fueling a surge of research ventures aimed at enhancing medical practices. By delving into the realm of precision medicine, this paper endeavors to scrutinize and evaluate recent advancements in healthcare pertaining to the utilization of machine learning (ML) and deep learning (DL) algorithms. This systematic review comprehensively encompasses previously published works, dissecting key concepts, innovations, significant contributions, and pivotal enabling techniques. Aspiring to equip readers with a profound understanding and invaluable insights, this paper proves indispensable to those dedicated to exploring the state-of-the-art and contributing to future literature in this domain.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"46 ","pages":"Article 101475"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000315/pdfft?md5=28b55ce3ae11e376f833b6eb1a872020&pid=1-s2.0-S2352914824000315-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of medicine, artificial intelligence (AI) has emerged as a transformative force, harnessing the power to convert raw data into meaningful insights. Rather than supplanting the discernment of physicians, AI serves as an unprecedented enabler, equipping them with unimaginable tools. Its far-reaching applications encompass drug discovery, disease diagnosis, prognosis, treatment optimization, and outcome prediction. This technological revolution owes much to the prowess of machine learning algorithms, which adeptly process multifaceted data. Consequently, AI is poised to become an integral pillar of digital health systems, shaping and bolstering the realm of personalized medicine. The current landscape is abuzz with AI’s exponential growth, fueling a surge of research ventures aimed at enhancing medical practices. By delving into the realm of precision medicine, this paper endeavors to scrutinize and evaluate recent advancements in healthcare pertaining to the utilization of machine learning (ML) and deep learning (DL) algorithms. This systematic review comprehensively encompasses previously published works, dissecting key concepts, innovations, significant contributions, and pivotal enabling techniques. Aspiring to equip readers with a profound understanding and invaluable insights, this paper proves indispensable to those dedicated to exploring the state-of-the-art and contributing to future literature in this domain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现精准医疗的变革:精准医疗中的人工智能方法系统文献综述
在医学领域,人工智能(AI)已成为一股变革力量,它能将原始数据转化为有意义的见解。人工智能非但没有取代医生的洞察力,反而成为前所未有的推动力,为他们提供了难以想象的工具。它的应用意义深远,包括药物发现、疾病诊断、预后判断、治疗优化和结果预测。这场技术革命在很大程度上要归功于机器学习算法的强大功能,它能够熟练地处理多方面的数据。因此,人工智能有望成为数字医疗系统不可或缺的支柱,塑造并加强个性化医疗领域。当前,人工智能正以指数级的速度发展,推动了旨在改善医疗实践的研究热潮。通过深入探讨精准医疗领域,本文致力于仔细研究和评估医疗保健领域在利用机器学习(ML)和深度学习(DL)算法方面的最新进展。这篇系统性综述全面涵盖了以前发表的作品,剖析了关键概念、创新、重要贡献和关键使能技术。本文旨在为读者提供深刻的理解和宝贵的见解,对于那些致力于探索该领域最新技术并为未来文献做出贡献的人来说,本文是不可或缺的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1