Oranso T. Mahlangu, Thabo I. Nkambule, Bhekie B. Mamba, Faisal I. Hai
{"title":"Strategies for mitigating challenges associated with trace organic compound removal by high-retention membrane bioreactors (HR-MBRs)","authors":"Oranso T. Mahlangu, Thabo I. Nkambule, Bhekie B. Mamba, Faisal I. Hai","doi":"10.1038/s41545-024-00313-w","DOIUrl":null,"url":null,"abstract":"Due to the limitations of conventional ultrafiltration/microfiltration-based membrane bioreactors (UF/MF-MBRs) in removing trace organic compounds (TrOCs), the concept of high-retention membrane bioreactors (HR-MBRs) was introduced. Despite the benefits, HR-MBRs still suffer several drawbacks. Therefore, this paper critically reviews the effectiveness and feasibility of the proposed strategies to alleviate fouling, salinity build-up and incomplete biodegradation of TrOCs during wastewater treatment by HR-MBRs. The severity of each challenge is compared amongst the various configurations together with the associated capital and operational expenditure to determine the most cost-effective set-up. Guidance is provided on strategies and/or lessons that could be adopted from well-established processes used at municipal scale. Chemical cleaning as mitigation for fouling degrades membranes leading to poor TrOCs removal, while pre-treatment and membrane surface modification increase operational expenditure (OpEX). However, there are other environmentally-friendly pretreatment and cleaning options which hold great potential for future application. These options such as advanced oxidation processes (AOPs) are critically discussed in this work. Further, in-depth discussion is made on the pros and cons of the various approaches (such as frequent sludge withdrawal, intermittent UF/MF filtration and using organic salts) to alleviate salt build-up. Finally, incomplete biodegradation of rejected TrOCs in the bioreactor transfers problems of toxic pollutants from wastewater treatment to sludge management. Herein mitigation strategies including using stronger biological agents and coupling HR-MBRs with other techniques are debated. Despite the challenges, HR-MBRs are a promising solution for clean water production from TrOCs impaired wastewater. Therefore, more research is needed to improve the performance of HR-MBRs.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00313-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00313-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the limitations of conventional ultrafiltration/microfiltration-based membrane bioreactors (UF/MF-MBRs) in removing trace organic compounds (TrOCs), the concept of high-retention membrane bioreactors (HR-MBRs) was introduced. Despite the benefits, HR-MBRs still suffer several drawbacks. Therefore, this paper critically reviews the effectiveness and feasibility of the proposed strategies to alleviate fouling, salinity build-up and incomplete biodegradation of TrOCs during wastewater treatment by HR-MBRs. The severity of each challenge is compared amongst the various configurations together with the associated capital and operational expenditure to determine the most cost-effective set-up. Guidance is provided on strategies and/or lessons that could be adopted from well-established processes used at municipal scale. Chemical cleaning as mitigation for fouling degrades membranes leading to poor TrOCs removal, while pre-treatment and membrane surface modification increase operational expenditure (OpEX). However, there are other environmentally-friendly pretreatment and cleaning options which hold great potential for future application. These options such as advanced oxidation processes (AOPs) are critically discussed in this work. Further, in-depth discussion is made on the pros and cons of the various approaches (such as frequent sludge withdrawal, intermittent UF/MF filtration and using organic salts) to alleviate salt build-up. Finally, incomplete biodegradation of rejected TrOCs in the bioreactor transfers problems of toxic pollutants from wastewater treatment to sludge management. Herein mitigation strategies including using stronger biological agents and coupling HR-MBRs with other techniques are debated. Despite the challenges, HR-MBRs are a promising solution for clean water production from TrOCs impaired wastewater. Therefore, more research is needed to improve the performance of HR-MBRs.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.