{"title":"Performance-enhancing substances in sport: A scientometric review of 75 years of research.","authors":"Alessandro Carollo, Ornella Corazza, Maria Mantovani, Nicolò Silvestrini, Olivier Rabin, Gianluca Esposito","doi":"10.1002/dta.3677","DOIUrl":null,"url":null,"abstract":"<p><p>The use of performance-enhancing substances not only undermines the core values of sports but also poses significant health risks to athletes. In a fast-evolving doping environment, where sport professionals are constantly seeking novel and illegal means to bypass doping tests, and new substances are regularly detected on the drug market, it is crucial to inform authorities with updated evidence emerging from scientific research. The current study aims to (i) outline the structure of knowledge in the literature on performance enhancers in sports (i.e., most active countries, main sources, most productive authors, and most frequently used keywords); (ii) identify the most impactful documents in the field; and (iii) uncover the main domains of research in the literature. To do so, we conducted a comprehensive scientometric analysis of the literature on doping, sourcing our data from Scopus. Our research involved a document co-citation analysis of 193,076 references, leading to the identification of the 51 most influential documents and seven key thematic areas within the doping literature. Our results indicate that the scientific community has extensively studied the most prevalent doping classes, such as anabolic agents and peptide hormones, and little is still known about the use of contaminated supplements or other types of enhancers identified as emergent trends. Concurrently, technological advancements contributed to the development of more sophisticated doping detection techniques, using blood or urine samples. More recently, the focus has shifted towards the athlete biological passport, with research efforts aimed at identifying biomarkers indicative of doping. The dynamic nature of doping methods underlines the necessity for more robust educational campaigns, aiming at raising awareness among sports professionals and their entourage about the dangers of doping and the intricacies of its control mechanisms.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":"13-24"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3677","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of performance-enhancing substances not only undermines the core values of sports but also poses significant health risks to athletes. In a fast-evolving doping environment, where sport professionals are constantly seeking novel and illegal means to bypass doping tests, and new substances are regularly detected on the drug market, it is crucial to inform authorities with updated evidence emerging from scientific research. The current study aims to (i) outline the structure of knowledge in the literature on performance enhancers in sports (i.e., most active countries, main sources, most productive authors, and most frequently used keywords); (ii) identify the most impactful documents in the field; and (iii) uncover the main domains of research in the literature. To do so, we conducted a comprehensive scientometric analysis of the literature on doping, sourcing our data from Scopus. Our research involved a document co-citation analysis of 193,076 references, leading to the identification of the 51 most influential documents and seven key thematic areas within the doping literature. Our results indicate that the scientific community has extensively studied the most prevalent doping classes, such as anabolic agents and peptide hormones, and little is still known about the use of contaminated supplements or other types of enhancers identified as emergent trends. Concurrently, technological advancements contributed to the development of more sophisticated doping detection techniques, using blood or urine samples. More recently, the focus has shifted towards the athlete biological passport, with research efforts aimed at identifying biomarkers indicative of doping. The dynamic nature of doping methods underlines the necessity for more robust educational campaigns, aiming at raising awareness among sports professionals and their entourage about the dangers of doping and the intricacies of its control mechanisms.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.