Highly Selective Acetylene-to-Ethylene Electroreduction Over Cd-Decorated Cu Catalyst with Efficiently Inhibited Carbon-Carbon Coupling

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-03-17 DOI:10.1002/anie.202400122
Zeping Wang, Chengyu Li, Gongao Peng, Dr. Run Shi, Prof. Lu Shang, Prof. Tierui Zhang
{"title":"Highly Selective Acetylene-to-Ethylene Electroreduction Over Cd-Decorated Cu Catalyst with Efficiently Inhibited Carbon-Carbon Coupling","authors":"Zeping Wang,&nbsp;Chengyu Li,&nbsp;Gongao Peng,&nbsp;Dr. Run Shi,&nbsp;Prof. Lu Shang,&nbsp;Prof. Tierui Zhang","doi":"10.1002/anie.202400122","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical acetylene reduction (EAR) employing Cu catalysts represents an environmentally friendly and cost-effective method for ethylene production and purification. However, Cu-based catalysts encounter product selectivity issues stemming from carbon-carbon coupling and other side reactions. We explored the use of secondary metals to modify Cu-based catalysts and identified Cd decoration as particular effective. Cd decoration demonstrated a high ethylene Faradaic efficiency (FE) of 98.38 % with well-inhibited carbon-carbon coupling reactions (0.06 % for butadiene FE at −0.5 V versus reversible hydrogen electrode) in a 5 vol % acetylene gas feed. Notably, ethylene selectivity of 99.99 % was achieved in the crude ethylene feed during prolonged stability tests. Theoretical calculations revealed that Cd metal accelerates the water dissociation on neighboring Cu surfaces allowing more H* to participate in the acetylene semi-hydrogenation, while increasing the energy barrier for carbon-carbon coupling, thereby contributing to a high ethylene semi-hydrogenation efficiency and significant inhibition of carbon-carbon coupling. This study provides a paradigm for a deeper understanding of secondary metals in regulating the product selectivity of EAR electrocatalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 19","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202400122","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical acetylene reduction (EAR) employing Cu catalysts represents an environmentally friendly and cost-effective method for ethylene production and purification. However, Cu-based catalysts encounter product selectivity issues stemming from carbon-carbon coupling and other side reactions. We explored the use of secondary metals to modify Cu-based catalysts and identified Cd decoration as particular effective. Cd decoration demonstrated a high ethylene Faradaic efficiency (FE) of 98.38 % with well-inhibited carbon-carbon coupling reactions (0.06 % for butadiene FE at −0.5 V versus reversible hydrogen electrode) in a 5 vol % acetylene gas feed. Notably, ethylene selectivity of 99.99 % was achieved in the crude ethylene feed during prolonged stability tests. Theoretical calculations revealed that Cd metal accelerates the water dissociation on neighboring Cu surfaces allowing more H* to participate in the acetylene semi-hydrogenation, while increasing the energy barrier for carbon-carbon coupling, thereby contributing to a high ethylene semi-hydrogenation efficiency and significant inhibition of carbon-carbon coupling. This study provides a paradigm for a deeper understanding of secondary metals in regulating the product selectivity of EAR electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在镉装饰铜催化剂上进行高选择性乙炔-乙烯电还原,有效抑制碳-碳偶联。
使用铜催化剂进行电化学乙炔还原(EAR)是一种环保且经济高效的乙烯生产和提纯方法。然而,Cu 基催化剂会因碳碳偶联反应和其他副反应而产生产品选择性问题。我们探索了使用二次金属改性铜基催化剂的方法,发现镉装饰特别有效。在 5 Vol.% 的乙炔气体进料中,镉装饰的乙烯法拉第效率 (FE) 高达 98.38%,碳碳偶联反应被很好地抑制(在-0.5 V 可逆氢电极条件下,丁二烯 FE 为 0.06%)。值得注意的是,在长时间的稳定性测试中,粗乙烯进料中的乙烯选择性达到了 99.99%。理论计算显示,镉金属加速了邻近铜表面的水解离,使更多的 H* 参与乙炔半加氢,同时增加了碳-碳耦合的能量障碍,从而提高了乙烯半加氢效率,并显著抑制了碳-碳耦合。这项研究为深入了解次级金属在调节 EAR 电催化剂产物选择性方面的作用提供了一个范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Atomically Precise [Cu‐Cu 54 ] Nanocluster‐Catalyzed Three‐Component Borylative Coupling of Alkynes with Alkyl Bromides and Chlorides Stabilizing Micro‐Sized Silicon Oxides by Durable Hydrogen Chemistry Thermally Robust Hexagonally Perforated Lamellae Enabled by Asymmetric Bottlebrush Copolymers Inside Front Cover: Persistent Mono‐Oxo Bonding with Protactinium(V) Revealed in Highly Acidic Chloride Solutions Dynamic Proton Allocation Drives High‐Efficiency Nitrate Electroreduction on High‐Entropy Alloy Aerogels Across Broad Concentration Ranges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1