GAILPG: Multiagent Policy Gradient With Generative Adversarial Imitation Learning

IF 2.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Games Pub Date : 2024-03-14 DOI:10.1109/TG.2024.3375515
Wei Li;Shiyi Huang;Ziming Qiu;Aiguo Song
{"title":"GAILPG: Multiagent Policy Gradient With Generative Adversarial Imitation Learning","authors":"Wei Li;Shiyi Huang;Ziming Qiu;Aiguo Song","doi":"10.1109/TG.2024.3375515","DOIUrl":null,"url":null,"abstract":"In reinforcement learning, the agents need to sufficiently explore the environment and efficiently exploit the existing experiences before finding the solution to the tasks, particularly in cooperative multiagent scenarios where the state and action spaces grow exponentially with the number of agents. Hence, enhancing the exploration ability of agents and improving the utilization efficiency of experiences are two critical issues in cooperative multiagent reinforcement learning. We propose a novel method called generative adversarial imitation learning policy gradients (GAILPG). The contributions of GAILPG are as follows: first, we integrate generative adversarial self-imitation learning into the multiagent actor–critic framework to improve the utilization efficiency of experiences, thus further assisting the policy training; second, we design a new curiosity module to enhance the exploration ability of the agents. Experimental results on the <italic>StarCraft II</i> micromanagement benchmark demonstrate that GAILPG surpasses state-of-the-art policy-based methods and is even on par with the value-based methods and the ablation experiments validate the reasonability of the discriminator module and the curiosity module encapsulated in our method.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 1","pages":"62-75"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10465634/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In reinforcement learning, the agents need to sufficiently explore the environment and efficiently exploit the existing experiences before finding the solution to the tasks, particularly in cooperative multiagent scenarios where the state and action spaces grow exponentially with the number of agents. Hence, enhancing the exploration ability of agents and improving the utilization efficiency of experiences are two critical issues in cooperative multiagent reinforcement learning. We propose a novel method called generative adversarial imitation learning policy gradients (GAILPG). The contributions of GAILPG are as follows: first, we integrate generative adversarial self-imitation learning into the multiagent actor–critic framework to improve the utilization efficiency of experiences, thus further assisting the policy training; second, we design a new curiosity module to enhance the exploration ability of the agents. Experimental results on the StarCraft II micromanagement benchmark demonstrate that GAILPG surpasses state-of-the-art policy-based methods and is even on par with the value-based methods and the ablation experiments validate the reasonability of the discriminator module and the curiosity module encapsulated in our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GAILPG:多代理策略梯度与生成式对抗模仿学习
在强化学习中,智能体需要在找到任务的解决方案之前充分探索环境并有效地利用现有经验,特别是在状态和动作空间随智能体数量呈指数增长的合作多智能体场景中。因此,增强智能体的探索能力和提高经验的利用效率是协同多智能体强化学习的两个关键问题。我们提出了一种新的方法,称为生成对抗模仿学习策略梯度(GAILPG)。GAILPG的贡献如下:首先,我们将生成式对抗性自我模仿学习整合到多智能体行为者批评框架中,提高了经验的利用效率,从而进一步辅助政策培训;其次,我们设计了一个新的好奇心模块来增强智能体的探索能力。在《星际争霸II》微管理基准上的实验结果表明,GAILPG超越了最先进的基于策略的方法,甚至与基于值的方法相当,消融实验验证了我们方法中封装的鉴别器模块和好奇心模块的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
期刊最新文献
IEEE Computational Intelligence Society Information Table of Contents IEEE Transactions on Games Publication Information IEEE Computational Intelligence Society Information Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1