{"title":"Sum-of-squares relaxations for polynomial min–max problems over simple sets","authors":"","doi":"10.1007/s10107-024-02072-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the resulting maximal value is minimized with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube, the Euclidean hypersphere, or a ball), we derive a sum-of-squares formulation based on a primal-dual approach. In the simplest setting, we provide a convergence proof when the degree of the relaxation tends to infinity and observe empirically that it can be finitely convergent in several situations. Moreover, our formulation leads to an interesting link with feasibility certificates for polynomial inequalities based on Putinar’s Positivstellensatz. </p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"3 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02072-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the resulting maximal value is minimized with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube, the Euclidean hypersphere, or a ball), we derive a sum-of-squares formulation based on a primal-dual approach. In the simplest setting, we provide a convergence proof when the degree of the relaxation tends to infinity and observe empirically that it can be finitely convergent in several situations. Moreover, our formulation leads to an interesting link with feasibility certificates for polynomial inequalities based on Putinar’s Positivstellensatz.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.