Predicting Flight Delays with Machine Learning: A Case Study from Saudi Arabian Airlines

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2024-03-15 DOI:10.1155/2024/3385463
Meshal Alfarhood, Rakan Alotaibi, Bassam Abdulrahim, Ahmad Einieh, Mohammed Almousa, Abdulrhman Alkhanifer
{"title":"Predicting Flight Delays with Machine Learning: A Case Study from Saudi Arabian Airlines","authors":"Meshal Alfarhood, Rakan Alotaibi, Bassam Abdulrahim, Ahmad Einieh, Mohammed Almousa, Abdulrhman Alkhanifer","doi":"10.1155/2024/3385463","DOIUrl":null,"url":null,"abstract":"Flight delays are a major concern for both travelers and airlines, with significant financial and reputational consequences. Accurately predicting flight delays is crucial for enhancing customer satisfaction and airline revenues. In this paper, we leverage the power of artificial intelligence and machine learning techniques to build a framework for accurately predicting flight delays. To achieve this, we collected flight information from September 2017 to April 2023, along with weather data, and performed extensive feature engineering to extract informative features to train our model. We conduct a comparative analysis of various popular machine learning architectures with distinctive characteristics, aiming to determine their efficacy in achieving optimal accuracy on our newly proposed dataset. Based on our evaluation of various architectures, our findings demonstrate that CatBoost outperformed the others by achieving the highest test accuracy and the lowest error rate in the challenging use case of Saudi Arabia. Moreover, to simulate real-world scenarios, our framework evaluates the best-performing model that has been selected for deployment in a web application, which provides users with the ability to accurately forecast flight delays and offers a user-friendly dashboard with valuable insights and analysis capabilities.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3385463","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Flight delays are a major concern for both travelers and airlines, with significant financial and reputational consequences. Accurately predicting flight delays is crucial for enhancing customer satisfaction and airline revenues. In this paper, we leverage the power of artificial intelligence and machine learning techniques to build a framework for accurately predicting flight delays. To achieve this, we collected flight information from September 2017 to April 2023, along with weather data, and performed extensive feature engineering to extract informative features to train our model. We conduct a comparative analysis of various popular machine learning architectures with distinctive characteristics, aiming to determine their efficacy in achieving optimal accuracy on our newly proposed dataset. Based on our evaluation of various architectures, our findings demonstrate that CatBoost outperformed the others by achieving the highest test accuracy and the lowest error rate in the challenging use case of Saudi Arabia. Moreover, to simulate real-world scenarios, our framework evaluates the best-performing model that has been selected for deployment in a web application, which provides users with the ability to accurately forecast flight delays and offers a user-friendly dashboard with valuable insights and analysis capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习预测航班延误:沙特阿拉伯航空公司案例研究
航班延误是旅客和航空公司都非常关注的问题,会对财务和声誉造成重大影响。准确预测航班延误对提高客户满意度和航空公司收入至关重要。在本文中,我们利用人工智能和机器学习技术的力量,建立了一个准确预测航班延误的框架。为此,我们收集了从 2017 年 9 月到 2023 年 4 月的航班信息以及天气数据,并进行了广泛的特征工程,以提取信息特征来训练我们的模型。我们对具有独特特征的各种流行机器学习架构进行了比较分析,旨在确定它们在我们新提出的数据集上实现最佳准确性的功效。基于对各种架构的评估,我们的研究结果表明,在沙特阿拉伯这一具有挑战性的使用案例中,CatBoost 的测试准确率最高,错误率最低,表现优于其他架构。此外,为了模拟真实世界的场景,我们的框架评估了表现最佳的模型,并选择将其部署到网络应用程序中,为用户提供准确预测航班延误的能力,并提供具有宝贵见解和分析功能的用户友好仪表板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints Development of Anisogrid Lattice Composite Structures for Fighter Wing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1