The resampling method via representative points

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY Statistical Papers Pub Date : 2024-03-18 DOI:10.1007/s00362-024-01536-2
Long-Hao Xu, Yinan Li, Kai-Tai Fang
{"title":"The resampling method via representative points","authors":"Long-Hao Xu, Yinan Li, Kai-Tai Fang","doi":"10.1007/s00362-024-01536-2","DOIUrl":null,"url":null,"abstract":"<p>The bootstrap method relies on resampling from the empirical distribution to provide inferences about the population with a distribution <i>F</i>. The empirical distribution serves as an approximation to the population. It is possible, however, to resample from another approximating distribution of <i>F</i> to conduct simulation-based inferences. In this paper, we utilize representative points to form an alternative approximating distribution of <i>F</i> for resampling. The representative points in terms of minimum mean squared error from <i>F</i> have been widely applied to numerical integration, simulation, and the problems of grouping, quantization, and classification. The method of resampling via representative points can be used to estimate the sampling distribution of a statistic of interest. A basic theory for the proposed method is established. We prove the convergence of higher-order moments of the new approximating distribution of <i>F</i>, and establish the consistency of sampling distribution approximation in the cases of the sample mean and sample variance under the Kolmogorov metric and Mallows–Wasserstein metric. Based on some numerical studies, it has been shown that the proposed resampling method improves the nonparametric bootstrap in terms of confidence intervals for mean and variance.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"84 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01536-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The bootstrap method relies on resampling from the empirical distribution to provide inferences about the population with a distribution F. The empirical distribution serves as an approximation to the population. It is possible, however, to resample from another approximating distribution of F to conduct simulation-based inferences. In this paper, we utilize representative points to form an alternative approximating distribution of F for resampling. The representative points in terms of minimum mean squared error from F have been widely applied to numerical integration, simulation, and the problems of grouping, quantization, and classification. The method of resampling via representative points can be used to estimate the sampling distribution of a statistic of interest. A basic theory for the proposed method is established. We prove the convergence of higher-order moments of the new approximating distribution of F, and establish the consistency of sampling distribution approximation in the cases of the sample mean and sample variance under the Kolmogorov metric and Mallows–Wasserstein metric. Based on some numerical studies, it has been shown that the proposed resampling method improves the nonparametric bootstrap in terms of confidence intervals for mean and variance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过代表点重新取样的方法
自举法依赖于从经验分布中重新取样来推断具有分布 F 的群体。不过,也可以从 F 的另一个近似分布中重新取样,进行基于模拟的推断。在本文中,我们利用代表点来形成 F 的另一种近似分布,以进行重新采样。从 F 的最小均方误差来看,代表点已被广泛应用于数值积分、模拟以及分组、量化和分类等问题。通过代表点重新取样的方法可用于估计相关统计量的取样分布。我们建立了拟议方法的基本理论。我们证明了 F 的新近似分布的高阶矩的收敛性,并在 Kolmogorov 公制和 Mallows-Wasserstein 公制下建立了样本均值和样本方差情况下抽样分布近似的一致性。基于一些数值研究表明,所提出的重采样方法在均值和方差的置信区间方面改进了非参数引导法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
期刊最新文献
The distribution of power-related random variables (and their use in clinical trials) The cost of sequential adaptation and the lower bound for mean squared error Nested strong orthogonal arrays Tests for time-varying coefficient spatial autoregressive panel data model with fixed effects On the consistency of supervised learning with missing values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1