Models to Support Forest Inventory and Small Area Estimation Using Sparsely Sampled LiDAR: A Case Study Involving G-LiHT LiDAR in Tanana, Alaska

Andrew O. Finley, Hans-Erik Andersen, Chad Babcock, Bruce D. Cook, Douglas C. Morton, Sudipto Banerjee
{"title":"Models to Support Forest Inventory and Small Area Estimation Using Sparsely Sampled LiDAR: A Case Study Involving G-LiHT LiDAR in Tanana, Alaska","authors":"Andrew O. Finley, Hans-Erik Andersen, Chad Babcock, Bruce D. Cook, Douglas C. Morton, Sudipto Banerjee","doi":"10.1007/s13253-024-00611-3","DOIUrl":null,"url":null,"abstract":"<p>A two-stage hierarchical Bayesian model is developed and implemented to estimate forest biomass density and total given sparsely sampled LiDAR and georeferenced forest inventory plot measurements. The model is motivated by the United States Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA) objective to provide biomass estimates for the remote Tanana Inventory Unit (TIU) in interior Alaska. The proposed model yields stratum-level biomass estimates for arbitrarily sized areas. Model-based estimates are compared with the TIU FIA design-based post-stratified estimates. Model-based small area estimates (SAEs) for two experimental forests within the TIU are compared with each forest’s design-based estimates generated using a dense network of independent inventory plots. Model parameter estimates and biomass predictions are informed using FIA plot measurements, LiDAR data that are spatially aligned with a subset of the FIA plots, and complete coverage remotely detected data used to define landuse/landcover stratum and percent forest canopy cover. Results support a model-based approach to estimating forest parameters when inventory data are sparse or resources limit collection of enough data to achieve desired accuracy and precision using design-based methods. Supplementary materials accompanying this paper appear on-line</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"145 17 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00611-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A two-stage hierarchical Bayesian model is developed and implemented to estimate forest biomass density and total given sparsely sampled LiDAR and georeferenced forest inventory plot measurements. The model is motivated by the United States Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA) objective to provide biomass estimates for the remote Tanana Inventory Unit (TIU) in interior Alaska. The proposed model yields stratum-level biomass estimates for arbitrarily sized areas. Model-based estimates are compared with the TIU FIA design-based post-stratified estimates. Model-based small area estimates (SAEs) for two experimental forests within the TIU are compared with each forest’s design-based estimates generated using a dense network of independent inventory plots. Model parameter estimates and biomass predictions are informed using FIA plot measurements, LiDAR data that are spatially aligned with a subset of the FIA plots, and complete coverage remotely detected data used to define landuse/landcover stratum and percent forest canopy cover. Results support a model-based approach to estimating forest parameters when inventory data are sparse or resources limit collection of enough data to achieve desired accuracy and precision using design-based methods. Supplementary materials accompanying this paper appear on-line

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用稀疏采样激光雷达支持森林资源清查和小面积估算的模型:阿拉斯加塔纳纳地区 G-LiHT 激光雷达案例研究
本研究开发并实施了一个两阶段分层贝叶斯模型,用于估算稀疏采样的激光雷达和地理参照森林资源调查小区的森林生物量密度和总量。美国农业部 (USDA) 林业局森林资源调查与分析 (FIA) 的目标是为阿拉斯加内陆偏远的塔纳纳调查单元 (TIU) 提供生物量估算,而该模型正是基于此目标而开发的。建议的模型可对任意大小的区域进行分层生物量估算。基于模型的估算值与 TIU FIA 设计的分层后估算值进行了比较。对 TIU 内的两片实验林进行了基于模型的小面积估算(SAE),并将其与利用密集的独立清查地块网络生成的每片林的基于设计的估算进行了比较。模型参数估计和生物量预测使用了森林资源评估地块测量数据、与森林资源评估地块子集在空间上一致的激光雷达数据,以及用于定义土地利用/土地覆盖层和森林冠层覆盖率的完整覆盖遥感数据。研究结果支持采用基于模型的方法估算森林参数,当清查数据稀少或资源限制无法收集足够的数据时,采用基于设计的方法可达到理想的准确度和精确度。本文附带的补充材料可在线查阅
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.
期刊最新文献
Algorithms for Fitting the Space-Time ETAS Model to Earthquake Catalog Data: A Comparative Study Bayesian Approaches to Proxy Uncertainty Quantification in Paleoecology: A Mathematical Justification and Practical Integration Stopping Rule Sampling to Monitor and Protect Endangered Species Environmental Loss Assessment via Functional Outlier Detection of Transformed Biodiversity Profiles Expectations of Linear and Nonlinear Hawkes Processes Using a Field-Theoretical Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1