Apelin is Peptide Increasing Tolerance of Organs and Cells to Hypoxia and Reoxygenation. The Signaling Mechanism

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-14 DOI:10.1007/s10989-024-10599-6
Sergey Valentinovich Popov, Leonid Nikolaevich Maslov, Alexandr Valerievich Mukhomedzyanov, Maria Sirotina, Natalia Vladimirovna Naryzhnaya, Boris Konstantinovich Kurbatov, Alexandr Sergeevich Gorbunov, Michail Kilin, Viacheslav Nikolaevich Azev, Nirmal Singh, Feng Fu, Jian-Ming Pei
{"title":"Apelin is Peptide Increasing Tolerance of Organs and Cells to Hypoxia and Reoxygenation. The Signaling Mechanism","authors":"Sergey Valentinovich Popov, Leonid Nikolaevich Maslov, Alexandr Valerievich Mukhomedzyanov, Maria Sirotina, Natalia Vladimirovna Naryzhnaya, Boris Konstantinovich Kurbatov, Alexandr Sergeevich Gorbunov, Michail Kilin, Viacheslav Nikolaevich Azev, Nirmal Singh, Feng Fu, Jian-Ming Pei","doi":"10.1007/s10989-024-10599-6","DOIUrl":null,"url":null,"abstract":"<p>Over the last three decades, treatment of stroke and acute myocardial infarction (AMI) has been improved, but it has stagnated in the last few years. Patients with stroke and AMI are admitted with formed ischemic injury of the brain or the heart, thereby it is difficult to affect this injury. However, it was possible to affect reperfusion injury of the brain or the heart. Ischemic damage to the lung is observed in pulmonary embolism. Ischemia and reperfusion of kidneys are observed in kidney transplantation. Significant progress in an increase in the efficacy of kidney transplantation, in treatment of stroke, pulmonary embolism, and AMI can be achieved through the development of novel drugs capable of preventing reperfusion injury of the brain or the heart with high efficiency. Synthetic apelin analogues with a long half-life could be prototypes of such drugs. It was found that apelins can increase tolerance of the heart, the brain, the lung, and the intestine to ischemia/reperfusion (I/R). Protein kinases are involved in the neuroprotective, cardioprotective, renoprotective, and pulmonoprotective effects of apelins. Mitochondrial permeability transition pore and ATP-sensitive K<sup>+</sup> channels are also involved in the protective effects of apelins. Apelins inhibit apoptosis and ferroptosis. Apelins activate autophagy of cardiomyocytes. Enzyme-resistant apelin analogues are perspective peptides for treatment of AMI, stroke, and I/R injury of lungs and kidneys.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10989-024-10599-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last three decades, treatment of stroke and acute myocardial infarction (AMI) has been improved, but it has stagnated in the last few years. Patients with stroke and AMI are admitted with formed ischemic injury of the brain or the heart, thereby it is difficult to affect this injury. However, it was possible to affect reperfusion injury of the brain or the heart. Ischemic damage to the lung is observed in pulmonary embolism. Ischemia and reperfusion of kidneys are observed in kidney transplantation. Significant progress in an increase in the efficacy of kidney transplantation, in treatment of stroke, pulmonary embolism, and AMI can be achieved through the development of novel drugs capable of preventing reperfusion injury of the brain or the heart with high efficiency. Synthetic apelin analogues with a long half-life could be prototypes of such drugs. It was found that apelins can increase tolerance of the heart, the brain, the lung, and the intestine to ischemia/reperfusion (I/R). Protein kinases are involved in the neuroprotective, cardioprotective, renoprotective, and pulmonoprotective effects of apelins. Mitochondrial permeability transition pore and ATP-sensitive K+ channels are also involved in the protective effects of apelins. Apelins inhibit apoptosis and ferroptosis. Apelins activate autophagy of cardiomyocytes. Enzyme-resistant apelin analogues are perspective peptides for treatment of AMI, stroke, and I/R injury of lungs and kidneys.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凋亡肽能增强器官和细胞对缺氧和再氧合的耐受性。信号机制
在过去的三十年里,中风和急性心肌梗塞(AMI)的治疗已有所改善,但最近几年却停滞不前。脑卒中和急性心肌梗死患者入院时已形成脑部或心脏缺血性损伤,因此很难影响这种损伤。然而,影响大脑或心脏的再灌注损伤是可能的。肺栓塞会对肺部造成缺血性损伤。肾脏缺血和再灌注可在肾脏移植中观察到。通过开发能够高效防止大脑或心脏再灌注损伤的新型药物,可在提高肾移植疗效、治疗中风、肺栓塞和急性心肌梗死方面取得重大进展。具有长半衰期的合成凋亡素类似物可以成为此类药物的原型。研究发现,杏仁蛋白能提高心脏、大脑、肺和肠道对缺血再灌注(I/R)的耐受性。蛋白激酶参与了杏仁蛋白的神经保护、心脏保护、肾脏保护和肺保护作用。线粒体通透性转换孔和 ATP 敏感性 K+ 通道也参与了杏仁蛋白的保护作用。杏仁蛋白可抑制细胞凋亡和铁凋亡。杏仁蛋白能激活心肌细胞的自噬。抗酶凋亡肽类似物是治疗急性心肌梗死、中风以及肺和肾的I/R损伤的前景肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1