Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS International Journal of Green Energy Pub Date : 2024-03-14 DOI:10.1080/15435075.2024.2326076
Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran
{"title":"Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches","authors":"Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran","doi":"10.1080/15435075.2024.2326076","DOIUrl":null,"url":null,"abstract":"Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"38 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2024.2326076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过实施易用的机器学习方法,改进对各种生物质来源的生物炭产量的预测
本研究探讨了可解释机器学习技术改变游戏规则的可能性,探索了快速发展的生物炭生产预测领域。论文展示了最近的机器学习技术是如何...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Green Energy
International Journal of Green Energy 工程技术-能源与燃料
CiteScore
6.60
自引率
9.10%
发文量
112
审稿时长
3.7 months
期刊介绍: International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.
期刊最新文献
Development of a hybrid renewable energy system for residential complexes in solar-rich regions, harnessing the collaborative power of TRNSYS and the response surface methodology The effect of geopolitical risk on the clean energy metals’ prices: the evidence of BRICS countries CO2 emissions of fuel-cell battery hybrid system for large ships Dynamic response and safety performance of composite-laminated heliostat under hail impact A novel sensor preference method for proton exchange membrane fuel cell flooding fault diagnosis based on multi-algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1