An electric kickscooter multibody model: equations of motion and linear stability analysis

IF 2.6 2区 工程技术 Q2 MECHANICS Multibody System Dynamics Pub Date : 2024-03-14 DOI:10.1007/s11044-024-09974-4
A. G. Agúndez, D. García-Vallejo, E. Freire
{"title":"An electric kickscooter multibody model: equations of motion and linear stability analysis","authors":"A. G. Agúndez, D. García-Vallejo, E. Freire","doi":"10.1007/s11044-024-09974-4","DOIUrl":null,"url":null,"abstract":"<p>In this work, a detailed multibody model of an electric kickscooter is presented. The model includes toroidal wheels as well as rear and front suspensions. The equations of motion are derived and linearized along the steady forward motion of the vehicle. Using an efficient linearization approach, suitable for complex multibody systems with holonomic and nonholonomic constraints, allows for obtaining the reduced linearized equations of motion as a function of the geometric, dynamic, wheels’, and suspensions’ parameters. The proposed electric kickscooter multibody model is validated with the stability results of a previously presented electric kickscooter benchmark. Since the resulting eigenvalues are parameterized regarding the design parameters, a detailed linear stability analysis of the system is performed. In particular, the influence on the stability of the toroidal geometry of the wheels, the elliptic cross-section of the toroidal wheels, the rider model, the steering axis inclination angle, the inertia tensor of the front frame, and the rear and front suspensions is analyzed. The model presented, together with the linearized equations of motion obtained in this work, enables a systematic analysis of the stability of these vehicles, which helps design new electric kickscooters with improved vehicle safety conditions and oriented to a wider range of potential users.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-024-09974-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a detailed multibody model of an electric kickscooter is presented. The model includes toroidal wheels as well as rear and front suspensions. The equations of motion are derived and linearized along the steady forward motion of the vehicle. Using an efficient linearization approach, suitable for complex multibody systems with holonomic and nonholonomic constraints, allows for obtaining the reduced linearized equations of motion as a function of the geometric, dynamic, wheels’, and suspensions’ parameters. The proposed electric kickscooter multibody model is validated with the stability results of a previously presented electric kickscooter benchmark. Since the resulting eigenvalues are parameterized regarding the design parameters, a detailed linear stability analysis of the system is performed. In particular, the influence on the stability of the toroidal geometry of the wheels, the elliptic cross-section of the toroidal wheels, the rider model, the steering axis inclination angle, the inertia tensor of the front frame, and the rear and front suspensions is analyzed. The model presented, together with the linearized equations of motion obtained in this work, enables a systematic analysis of the stability of these vehicles, which helps design new electric kickscooters with improved vehicle safety conditions and oriented to a wider range of potential users.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动踏板车多体模型:运动方程和线性稳定性分析
在这项工作中,介绍了电动踏板车的详细多体模型。该模型包括环形车轮以及后悬架和前悬架。推导出运动方程,并沿着车辆的稳定前行运动进行线性化。使用一种适用于具有整体和非整体约束的复杂多体系统的高效线性化方法,可以获得作为几何、动态、车轮和悬挂参数函数的简化线性化运动方程。所提出的电动滑板车多体模型与之前提出的电动滑板车基准的稳定性结果进行了验证。由于得出的特征值与设计参数有关,因此对系统进行了详细的线性稳定性分析。特别是分析了车轮的环形几何形状、环形车轮的椭圆截面、骑手模型、转向轴倾角、前车架惯性张量以及前后悬架对稳定性的影响。所提出的模型以及在这项工作中获得的线性化运动方程能够对这些车辆的稳定性进行系统分析,这有助于设计出具有更好的车辆安全条件和面向更广泛潜在用户的新型电动滑板车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
17.60%
发文量
46
审稿时长
12 months
期刊介绍: The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations. The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.
期刊最新文献
Development of an identification method for the minimal set of inertial parameters of a multibody system Vibration transmission through the seated human body captured with a computationally efficient multibody model Data-driven inverse dynamics modeling using neural-networks and regression-based techniques Load torque estimation for cable failure detection in cable-driven parallel robots: a machine learning approach Mutual information-based feature selection for inverse mapping parameter updating of dynamical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1