An energy-balanced method for determining the optimized parameter of the incompatible generalized mixed element

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2024-03-14 DOI:10.1177/10812865241233997
Yonggang Wang, Guanghui Qing
{"title":"An energy-balanced method for determining the optimized parameter of the incompatible generalized mixed element","authors":"Yonggang Wang, Guanghui Qing","doi":"10.1177/10812865241233997","DOIUrl":null,"url":null,"abstract":"A novel method for determining the optimized parameter of the four-node incompatible generalized mixed element is presented based on the equilibrium between strain energy and complementary energy. The presented energy formulations are derived from the generalized mixed variational principle, which contains an arbitrary additional parameter. The initial solutions expressed by the displacement field are firstly assumed for the description of the energy of each generalized mixed element. Then, the identical relationship between strain energy and complementary energy is subsequently expressed at element level, which includes the arbitrary parameter. At the same time, a formulation for determining the optimized parameter at element level is proposed. Several representative examples with varying geometrical parameters, boundary and loading conditions are used to validate this method. By contrasting with the results of generalized mixed elements with different parameter values and other traditional finite elements. The effectiveness of the presented method has been demonstrated. On one hand, by ensuring the strain energy and complementary energy remain consistent under both coarse and fine meshes, the optimized parameter can adjust the stiffness of the generalized mixed element, thereby enhancing its resemblance to the real elastic body. On the other hand, the generalized mixed element has the additional advantage of conveniently introducing stress boundary conditions, thereby satisfying the requirement for zero-conditions of shear stresses on the exterior surfaces of beams. The numerical results obtained by the proposed method are accurate and stable.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"5 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241233997","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method for determining the optimized parameter of the four-node incompatible generalized mixed element is presented based on the equilibrium between strain energy and complementary energy. The presented energy formulations are derived from the generalized mixed variational principle, which contains an arbitrary additional parameter. The initial solutions expressed by the displacement field are firstly assumed for the description of the energy of each generalized mixed element. Then, the identical relationship between strain energy and complementary energy is subsequently expressed at element level, which includes the arbitrary parameter. At the same time, a formulation for determining the optimized parameter at element level is proposed. Several representative examples with varying geometrical parameters, boundary and loading conditions are used to validate this method. By contrasting with the results of generalized mixed elements with different parameter values and other traditional finite elements. The effectiveness of the presented method has been demonstrated. On one hand, by ensuring the strain energy and complementary energy remain consistent under both coarse and fine meshes, the optimized parameter can adjust the stiffness of the generalized mixed element, thereby enhancing its resemblance to the real elastic body. On the other hand, the generalized mixed element has the additional advantage of conveniently introducing stress boundary conditions, thereby satisfying the requirement for zero-conditions of shear stresses on the exterior surfaces of beams. The numerical results obtained by the proposed method are accurate and stable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定不相容广义混合元素优化参数的能量平衡法
根据应变能和补充能之间的平衡,提出了一种确定四节点不相容广义混合元素优化参数的新方法。所提出的能量公式源于广义混合变分原理,其中包含一个任意附加参数。在描述每个广义混合元素的能量时,首先假设由位移场表示的初始解。然后,在包含任意参数的元素层面上表达应变能和补充能之间的相同关系。同时,还提出了确定元素级优化参数的公式。通过几个几何参数、边界条件和加载条件各不相同的代表性实例来验证这种方法。通过与具有不同参数值的广义混合元素和其他传统有限元的结果进行对比。证明了该方法的有效性。一方面,通过确保粗网格和细网格下的应变能和补充能保持一致,优化参数可以调整广义混合元素的刚度,从而增强其与真实弹性体的相似性。另一方面,广义混合元素还具有方便引入应力边界条件的优势,从而满足梁外表面剪应力零条件的要求。利用所提出的方法得到的数值结果准确而稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1