Factor-augmented forecasting in big data

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2024-03-16 DOI:10.1016/j.ijforecast.2024.02.004
{"title":"Factor-augmented forecasting in big data","authors":"","doi":"10.1016/j.ijforecast.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper evaluates the predictive performance of various factor estimation methods in big data. Extensive forecasting experiments are examined using seven factor estimation methods with 13 decision rules determining the number of factors. The out-of-sample forecasting results show that the first Partial Least Squares factor (1-PLS) tends to be the best-performing method among all the possible alternatives. This finding is prevalent in many target variables under different forecasting horizons and models. This significant improvement can be explained by the PLS factor estimation strategy that considers the covariance with the target variable. Second, using a consistently estimated number of factors may not necessarily improve forecasting performance. The greatest predictive gain often derives from decision rules that do not consistently estimate the true number of factors.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1660-1688"},"PeriodicalIF":6.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207024000098/pdfft?md5=bc3f0812065997cb8e01528b63ed0435&pid=1-s2.0-S0169207024000098-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000098","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper evaluates the predictive performance of various factor estimation methods in big data. Extensive forecasting experiments are examined using seven factor estimation methods with 13 decision rules determining the number of factors. The out-of-sample forecasting results show that the first Partial Least Squares factor (1-PLS) tends to be the best-performing method among all the possible alternatives. This finding is prevalent in many target variables under different forecasting horizons and models. This significant improvement can be explained by the PLS factor estimation strategy that considers the covariance with the target variable. Second, using a consistently estimated number of factors may not necessarily improve forecasting performance. The greatest predictive gain often derives from decision rules that do not consistently estimate the true number of factors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据中的因子增强预测
本文评估了大数据中各种因素估计方法的预测性能。使用七种因子估计方法和 13 条决定因子数量的决策规则进行了广泛的预测实验。样本外预测结果表明,在所有可能的替代方法中,第一个偏最小二乘法因子(1-PLS)往往是表现最好的方法。这一发现在不同预测期限和预测模型下的许多目标变量中都很普遍。这种明显改善的原因在于 PLS 因子估计策略考虑了与目标变量的协方差。其次,使用一致估计的因子数不一定能提高预测性能。最大的预测收益往往来自于决策规则,而决策规则并不能始终如一地估算出真正的因子数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
Editorial Board Forecasting house price growth rates with factor models and spatio-temporal clustering Forecasting realized volatility with spillover effects: Perspectives from graph neural networks Sparse time-varying parameter VECMs with an application to modeling electricity prices Guest editorial: Forecasting for social good
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1