Chris Keilbart, Yuhui Gao, Martin Chua, Eric Matthews, Steven J.E. Wilton, Lesley Shannon
{"title":"Designing an IEEE-compliant FPU that supports configurable precision for soft processors","authors":"Chris Keilbart, Yuhui Gao, Martin Chua, Eric Matthews, Steven J.E. Wilton, Lesley Shannon","doi":"10.1145/3650036","DOIUrl":null,"url":null,"abstract":"<p>Field Programmable Gate Arrays (FPGAs) are commonly used to accelerate floating-point (FP) applications. Although researchers have extensively studied FPGA FP implementations, existing work has largely focused on standalone operators and frequency-optimized designs. These works are not suitable for FPGA soft processors which are more sensitive to latency, impose a lower frequency ceiling, and require IEEE FP standard compliance. We present an open-source floating-point unit (FPU) for FPGA RISC-V soft processors that is fully IEEE compliant with configurable levels of FP precision. Our design emphasizes runtime performance with 25% lower latency in the most common instructions compared to previous works while maintaining efficient resource utilization. </p><p>Our FPU also allows users to explore various mantissa widths without having to rewrite or recompile their algorithms. We use this to investigate the scalability of our reduced-precision FPU across numerous microbenchmark functions as well as more complex case studies. Our experiments show that applications like the discrete cosine transformation and the Black-Scholes model can realize a speedup of more than 1.35x in conjunction with a 43% and 35% reduction in lookup table and flip-flop resources while experiencing less than a 0.025% average loss in numerical accuracy with a 16-bit mantissa width.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Field Programmable Gate Arrays (FPGAs) are commonly used to accelerate floating-point (FP) applications. Although researchers have extensively studied FPGA FP implementations, existing work has largely focused on standalone operators and frequency-optimized designs. These works are not suitable for FPGA soft processors which are more sensitive to latency, impose a lower frequency ceiling, and require IEEE FP standard compliance. We present an open-source floating-point unit (FPU) for FPGA RISC-V soft processors that is fully IEEE compliant with configurable levels of FP precision. Our design emphasizes runtime performance with 25% lower latency in the most common instructions compared to previous works while maintaining efficient resource utilization.
Our FPU also allows users to explore various mantissa widths without having to rewrite or recompile their algorithms. We use this to investigate the scalability of our reduced-precision FPU across numerous microbenchmark functions as well as more complex case studies. Our experiments show that applications like the discrete cosine transformation and the Black-Scholes model can realize a speedup of more than 1.35x in conjunction with a 43% and 35% reduction in lookup table and flip-flop resources while experiencing less than a 0.025% average loss in numerical accuracy with a 16-bit mantissa width.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.