Effect of tensile and compressive strains on the electronic structure of O-atom-doped monolayer MoS2

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED International Journal of Modern Physics B Pub Date : 2024-03-14 DOI:10.1142/s0217979225500122
Wang Jia-Xin, Liu Gui-Li, Wei Lin, Jiao Gan, Zhang Guo-Ying
{"title":"Effect of tensile and compressive strains on the electronic structure of O-atom-doped monolayer MoS2","authors":"Wang Jia-Xin, Liu Gui-Li, Wei Lin, Jiao Gan, Zhang Guo-Ying","doi":"10.1142/s0217979225500122","DOIUrl":null,"url":null,"abstract":"<p>We investigate the effects of biaxial tensile and compressive strains on the electronic structure of O-doped monolayer MoS<sub>2</sub> by density functional theory (DFT) in this paper. O-doped monolayer MoS<sub>2</sub> is an exothermic reaction. The doping of O leads to the transformation of the system from direct bandgap to indirect, and the bonding of Mo and O causes a large amount of charge transfer. The application of tensile strain leads to a decrease in the stability of the doped system, and the system always maintains the nature of indirect bandgap. The degree of interatomic charge transfer and bandgap value gradually decrease with the increase of tensile strain. The application of compression strain improves the stability of the doped system, and as the compressive strain increases, the bandgap of the doped system completes the indirect–direct–indirect transformation. The bandgap value shows a trend of increasing and then decreasing. Additionally, the degree of charge transfer between atoms is strengthened.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"20 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500122","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the effects of biaxial tensile and compressive strains on the electronic structure of O-doped monolayer MoS2 by density functional theory (DFT) in this paper. O-doped monolayer MoS2 is an exothermic reaction. The doping of O leads to the transformation of the system from direct bandgap to indirect, and the bonding of Mo and O causes a large amount of charge transfer. The application of tensile strain leads to a decrease in the stability of the doped system, and the system always maintains the nature of indirect bandgap. The degree of interatomic charge transfer and bandgap value gradually decrease with the increase of tensile strain. The application of compression strain improves the stability of the doped system, and as the compressive strain increases, the bandgap of the doped system completes the indirect–direct–indirect transformation. The bandgap value shows a trend of increasing and then decreasing. Additionally, the degree of charge transfer between atoms is strengthened.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉伸和压缩应变对掺杂 O 原子的单层 MoS2 电子结构的影响
本文通过密度泛函理论(DFT)研究了双轴拉伸和压缩应变对掺杂 O 的单层 MoS2 电子结构的影响。掺杂 O 的单层 MoS2 是一种放热反应。O 的掺杂导致体系从直接带隙转变为间接带隙,Mo 和 O 的成键引起了大量的电荷转移。施加拉伸应变会导致掺杂体系的稳定性下降,而体系始终保持间接带隙的性质。原子间电荷转移的程度和带隙值随着拉伸应变的增加而逐渐减小。压缩应变的施加提高了掺杂体系的稳定性,随着压缩应变的增加,掺杂体系的带隙完成了间接-直接-间接的转变。带隙值呈现先增大后减小的趋势。此外,原子间的电荷转移程度也得到了加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
期刊最新文献
Möbius group actions in the solvable chimera model On the solutions of space-time fractional CBS and CBS-BK equations describing the dynamics of Riemann wave interaction Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis Electro-fluid-dynamics (EFD) of soft-bodied organisms swimming through mucus having dilatant, viscous, and pseudo-plastic properties Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1