L. Renuga Devi, E. Selva Esakki, S. Meenakshi Sundar
{"title":"Synthesis, characterization and properties of Cr-doped ZnO nanoparticles via a facile solvothermal route","authors":"L. Renuga Devi, E. Selva Esakki, S. Meenakshi Sundar","doi":"10.1142/s0217979225500158","DOIUrl":null,"url":null,"abstract":"<p>Cr-doped ZnO (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>2</mn></math></span><span></span>–0.08) nanoparticles are synthesized using the microwave solvothermal irradiation technique. The final product is calcinated at 450<sup>∘</sup>C and the nanostructure of the material is investigated using various techniques. In structural studies, XRD analysis shows that the hexagonal wurtzite structure of ZnO is present in the standard JCPDS card. FESEM spectrum reveals the hexagonal shape of the synthesized samples and EDS provides information on the qualitative composition of the nanoparticles. Optical absorbance images show exciton peaks in the UV region, which can be attributed to Cr incorporation into the ZnO lattice, and the optical energy bandgap values are calculated using the tauc plot method. Photoluminescence (PL) emission spectra are measured using PL spectroscopy. Interestingly, vibrating sample magnetometry (VSM) reveals enhancements in the magnetic properties in M–H loops and it is widely used for biological applications like antibacterial activity.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"50 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500158","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cr-doped ZnO (–0.08) nanoparticles are synthesized using the microwave solvothermal irradiation technique. The final product is calcinated at 450∘C and the nanostructure of the material is investigated using various techniques. In structural studies, XRD analysis shows that the hexagonal wurtzite structure of ZnO is present in the standard JCPDS card. FESEM spectrum reveals the hexagonal shape of the synthesized samples and EDS provides information on the qualitative composition of the nanoparticles. Optical absorbance images show exciton peaks in the UV region, which can be attributed to Cr incorporation into the ZnO lattice, and the optical energy bandgap values are calculated using the tauc plot method. Photoluminescence (PL) emission spectra are measured using PL spectroscopy. Interestingly, vibrating sample magnetometry (VSM) reveals enhancements in the magnetic properties in M–H loops and it is widely used for biological applications like antibacterial activity.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.