Upregulation of ATF4 mediates the cellular adaptation to pharmacologic inhibition of amino acid transporter LAT1 in pancreatic ductal adenocarcinoma cells

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of pharmacological sciences Pub Date : 2024-03-13 DOI:10.1016/j.jphs.2024.03.001
Yu Ma , Suguru Okuda , Hiroki Okanishi , Minhui Xu , Chunhuan Jin , Hitoshi Endou , Ryuichi Ohgaki , Yoshikatsu Kanai
{"title":"Upregulation of ATF4 mediates the cellular adaptation to pharmacologic inhibition of amino acid transporter LAT1 in pancreatic ductal adenocarcinoma cells","authors":"Yu Ma ,&nbsp;Suguru Okuda ,&nbsp;Hiroki Okanishi ,&nbsp;Minhui Xu ,&nbsp;Chunhuan Jin ,&nbsp;Hitoshi Endou ,&nbsp;Ryuichi Ohgaki ,&nbsp;Yoshikatsu Kanai","doi":"10.1016/j.jphs.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>L-type amino acid transporter 1 (LAT1) is recognized as a promising target for cancer therapy; however, the cellular adaptive response to its pharmacological inhibition remains largely unexplored. This study examined the adaptive response to LAT1 inhibition using nanvuranlat, a high-affinity LAT1 inhibitor. Proteomic analysis revealed the activation of a stress-induced transcription factor ATF4 following LAT1 inhibition, aligning with the known cellular responses to amino acid deprivation. This activation was linked to the GCN2-eIF2α pathway which regulates translation initiation. Our results show that ATF4 upregulation counteracts the suppressive effect of nanvuranlat on cell proliferation in pancreatic ductal adenocarcinoma cell lines, suggesting a role for ATF4 in cellular adaptation to LAT1 inhibition. Importantly, dual targeting of LAT1 and ATF4 exhibited more substantial anti-proliferative effects <em>in vitro</em> than individual treatments. This study underscores the potential of combining LAT1 and ATF4 inhibition as a therapeutic strategy in cancer treatment.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"155 1","pages":"Pages 14-20"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000276/pdfft?md5=3ebaf9d7cc856ff4f50c85f1d9e44822&pid=1-s2.0-S1347861324000276-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000276","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

L-type amino acid transporter 1 (LAT1) is recognized as a promising target for cancer therapy; however, the cellular adaptive response to its pharmacological inhibition remains largely unexplored. This study examined the adaptive response to LAT1 inhibition using nanvuranlat, a high-affinity LAT1 inhibitor. Proteomic analysis revealed the activation of a stress-induced transcription factor ATF4 following LAT1 inhibition, aligning with the known cellular responses to amino acid deprivation. This activation was linked to the GCN2-eIF2α pathway which regulates translation initiation. Our results show that ATF4 upregulation counteracts the suppressive effect of nanvuranlat on cell proliferation in pancreatic ductal adenocarcinoma cell lines, suggesting a role for ATF4 in cellular adaptation to LAT1 inhibition. Importantly, dual targeting of LAT1 and ATF4 exhibited more substantial anti-proliferative effects in vitro than individual treatments. This study underscores the potential of combining LAT1 and ATF4 inhibition as a therapeutic strategy in cancer treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATF4 的上调介导了胰腺导管腺癌细胞对氨基酸转运体 LAT1 药物抑制的适应性变化
L型氨基酸转运体1(LAT1)被认为是一种很有前景的癌症治疗靶点;然而,细胞对其药理抑制的适应性反应在很大程度上仍未得到探索。本研究使用一种高亲和力的 LAT1 抑制剂 nanvuranlat 考察了细胞对 LAT1 抑制的适应性反应。蛋白质组分析表明,LAT1抑制后,应激诱导的转录因子ATF4被激活,这与已知的细胞对氨基酸剥夺的反应一致。这种激活与调控翻译起始的 GCN2-eIF2α 通路有关。我们的研究结果表明,ATF4 的上调抵消了纳武拉特对胰腺导管腺癌细胞株细胞增殖的抑制作用,这表明 ATF4 在细胞适应 LAT1 抑制过程中发挥作用。重要的是,LAT1 和 ATF4 的双重靶向作用比单独治疗具有更显著的抗增殖效果。这项研究强调了联合抑制 LAT1 和 ATF4 作为癌症治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
104
审稿时长
31 days
期刊介绍: Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.
期刊最新文献
Rehmannioside A promotes the osteoblastic differentiation of MC3T3-E1 cells via the PI3K/AKT signaling pathway and inhibits glucocorticoid-induced bone loss in vivo Targeting TMEM16A ion channels suppresses airway hyperreactivity, inflammation, and remodeling in an experimental Guinea pig asthma model Glucosylceramide synthase inhibitor ameliorates chronic inflammatory pain TND1128, a 5-deazaflavin derivative with auto-redox ability, facilitates polarization of mitochondrial membrane potential (ΔΨm) and on-demand ATP synthesis in mice brain slices Analgesic effect of Keishinieppiittokajutsubu on low barometric pressure-induced pain response in arthritic model rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1