{"title":"Paper-based Microfluidic Devices for the Analysis of Various Pathogens from Diverse Samples","authors":"Namita Ashish Singh, Nitish Rai, Ashish Kumar Singh, Vidhi Jain, Jagriti Narang","doi":"10.2174/0115734110292458240306055653","DOIUrl":null,"url":null,"abstract":": In today’s era, detection of disease is utmost important for the management of disease. Early detection leads to early management of disease. Paper-based microfluidic devices are promising technologies that are cost-effective, portable and easy to use over conventional methods. In addition, paper-based microfluidics offers low reagent/sample volume, less response time and can be used in resource-limited settings. Researchers are highly fascinated by this technology as it has a lot of potential to convert into commercial monitoring devices. The present article covers the uses of paper-based microfluidic technology for the swift and sensitive detection of pathogens from diverse samples, viz. food, water and blood. In this comprehensive review, paper-based microfluidic devices are introduced, including the basic concepts, current status and applications, along with the discussion of the limitations of microfluidics for the detection of pathogens. Although paper-based microfluidic devices are being developed, their commercialization requires simplification of manufacturing processes, reduction in production costs as well as an increase in production efficiency. Nonetheless, the integration of artificial intelligence (AI) and the Internet of Things (IoT) like smartphones, digital cameras, webcam etc. with paper-associated diagnosis has transformed the point-of-care (POC) diagnostics.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"148 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110292458240306055653","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
: In today’s era, detection of disease is utmost important for the management of disease. Early detection leads to early management of disease. Paper-based microfluidic devices are promising technologies that are cost-effective, portable and easy to use over conventional methods. In addition, paper-based microfluidics offers low reagent/sample volume, less response time and can be used in resource-limited settings. Researchers are highly fascinated by this technology as it has a lot of potential to convert into commercial monitoring devices. The present article covers the uses of paper-based microfluidic technology for the swift and sensitive detection of pathogens from diverse samples, viz. food, water and blood. In this comprehensive review, paper-based microfluidic devices are introduced, including the basic concepts, current status and applications, along with the discussion of the limitations of microfluidics for the detection of pathogens. Although paper-based microfluidic devices are being developed, their commercialization requires simplification of manufacturing processes, reduction in production costs as well as an increase in production efficiency. Nonetheless, the integration of artificial intelligence (AI) and the Internet of Things (IoT) like smartphones, digital cameras, webcam etc. with paper-associated diagnosis has transformed the point-of-care (POC) diagnostics.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.